首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of wound dressings with excellent self-healing ability, adequate adhesion, good biocompatibility, and potential antibacterial ability is of great significance for the healing of infected wounds arising from human activities. Herein, a series of multi-functional hydrogel dressings, poly(ionized isocyanoethyl methacrylate-glutamine)/poly(hexamethylene guanidine) (iGx/PHMGy) hydrogels, were obtained through homopolymerization of fully ionized isocyanoethyl methacrylate-glutamine (iIEM-Gln) in the presence of poly(hexamethylene guanidine) (PHMG), in which strong hydrogen bonds were formed among urea groups in the P (iIEM-Gln) chain to form a stable hydrogel network. The prepared iGx/PHMGy hydrogels exhibited adequate self-healing ability and tissue adhesion, which could be firmly adhered to the wound surface and remained intact during application. In addition, the presence of PHMG imparted good antibacterial activity to the hydrogels for the effective promotion of the wound healing in S. aureus infected skin wound on mice. Overall, this multi-functional hydrogel provides a facile and effective strategy for the design of infected wound dressings, and may show great potential in clinical applications.  相似文献   

2.
Due to excessive use of antibiotics, resistance against microorganisms is developed. An alternative use of antibiotics, natural remedies from plants have been used against infectious diseases. In the current study, bioactive compounds from Calotropis procera (C. procera) root were extracted and chitosan and polyvinyl alcohol (CS-PVA) were used asa carriers and for the delivery to treat induced infection. Different concentration of C. procera extracts (25–75 mg/mL) were loaded on CS-PVA membrane and applied on the induced wounds in rabbits. Wound reduction was recorded for 12 days. On 6th day, small tissue from healing area were collected and subject to histopathology for tissue regeneration. The antioxidant activity (DPPH, TPC and TFC) was also investigated of CS-PVA loaded C. procera root extract. The DPPH free radical inhibition for 75 mg/mL were recorded up to 66.37%. The TPC and TFC contents were recorded to be 36.52 ± 5.12 GAE mg/g of DW (dry weight) and 24.49 ± 6.27 CE mg/g of DW (dry weight), respectively. The antibacterial activity was evaluated against Escherichia coli and Staphylococcus aureus in comparison to control (Rifampicin). The zones of inhibition were recorded to be 18.50 ± 2.30 and 20.40 ± 4.20, respectively for CS-PVA membrane loaded with 75 mg extracts along with Rifampicin 28.50 ± 2.5 and 30.50 ± 1.38. The CS-PVA membranes were also studied for swelling and biodegradability. The biodegradability was increased, while swelling was decreased of CS-PVA membranes loaded with extract. The bioactive compounds from the CS-PVA loaded with extract released in controlled and sustainable way. Result revealed that CS-PVA loaded C. procera root extract has promising antimicrobial and antioxidant activity and could possibly be employed for the treatment of infectious diseases.  相似文献   

3.
4.
Nowadays, despite remarkable progress in developing bone tissue engineering products, the fabrication of an ideal scaffold that could meet the main criteria, such as providing mechanical properties and suitable biostability as well as mimicking the bone extracellular matrix, still seems challenging. In this regard, utilizing combinatorial approaches seems more beneficial. Here, we aim to reinforce the mechanical characteristics of gelatin hydrogel via a combination of Genipin‐based chemical cross‐linking and incorporation of the poly l ‐lactic acid (PLLA) nanocylinders for application as bone scaffolds. Amine‐functionalized nanocylinders are prepared via the aminolysis procedure and incorporated in gelatin hydrogel. The nanocylinder content (0, 1, 2, 3, and 4 wt%) and cross‐linking density (0.1, 0.5, and 1 wt/vol%) are optimized to achieve suitable morphology, swelling ratio, degradation rate, and mechanical behaviors. The results indicate that hydrogel scaffold cross‐linking by 0.5 wt% of Genipin shows optimized morphological feathers with a pore size of around 300 to 500 μm as well as an average degradation rate (40.09% ± 3.08%) during 32 days. Besides, the incorporation of 3 wt% PLLA nanocylinders into the cross‐linked gelatin scaffold provides an optimized mechanical reinforcement as compressive modulus, and compressive strength show a 4‐ and 2.6‐fold increase, respectively. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay indicates that the scaffold does not have any cytotoxicity effect. In conclusion, gelatin composite reinforced with 3 wt% PLLA nanocylinders cross‐linked via 0.5 wt/vol% Genipin is suggested as a potential scaffold for bone tissue engineering applications.  相似文献   

5.
A new squaraine dye with fluorinated benzothiazole rings was synthesized. This new label possesses improved photophysical properties and chemical stability as compared to the corresponding non-fluorinated and the dicyanosquaraines. These squaraines were used for the labeling of a series of oligonucleotides with various sequences, lengths, and chemistries. The conjugates involving the fluorinated squaraine possess the best properties: emission wavelength >670 nm, high quantum yields (0.27-0.39).  相似文献   

6.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

7.
In this work, we propose a method to determine trace amounts of Cd in human whole blood samples by electrothermal atomic absorption spectrometry (ETAAS) with the combined chemical modifier including magnesium chloride and sodium hydroxide. Prior to the ETAAS analysis, dissolution of the blood samples is accomplished using a HNO3-HClO4double closed-vessel microwave digestion technique followed by drying of the dissolved blood samples by means of an infrared lamp. In using this approach, a MgCl2 chemical modifier is added to the digested samples, then they are injected into the graphite furnace for detecting the Cd level via atomic absorption spectrometer. Besides we used a NaOH chemical modifier, which removed the matrix major elements through prior ashing at 1200 ° C for 30 s, and the Cd is subsequently volatilized at 2200 °C and determined by AAS. However, the proposed method can be employed to determine the of Cd level in whole blood samples by the calibration technique and the standard-additions method. Its validity is confirmed with two certified reference whole blood materials (Seronorm Trace Elements Whole Blood Batch no. 205052 and Batch no. 203056). By using 10 μL injections, a detection limit of 0.052 ng mL?1 is achieved.  相似文献   

8.
A novel method is proposed to synthesize new mesoporous silica containing amine groups (MPSA), and it was further employed to modify bismaleimide‐dialllyl bisphenol (BD)/cyanate ester (CE) resin to form novel MPSA/BD/CE hybrids; in addition, the typical properties of MPSA/BD/CE were systematically investigated. Results show that these hybrids have very low dielectric constant and loss as well as good thermal properties. Compared with BD/CE resin, all hybrids have not only decreased dielectric constant and loss but also similar dependence of dielectric properties on frequency over the whole frequency from 10 to 106 Hz. Specifically, with the addition of MPSA to BD/CE resin, the dielectric constant reduces from 3.5 to 3.0, and the dielectric loss is only 85% of that of BD/CE resin. Note that all hybrids show better thermal resistance (reflected by higher glass transition temperature, decreased maximum degradation rate, and higher char yield at 800°C) than BD/CE resin. All these differences in macro‐properties are attributed to the different structure between MPSA/BD/CE hybrids and BD/CE resin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Two novel triphenylene liquid crystals with 15-crown-5 unit as side-chain 4a and 4b were designed and synthesised by simple procedures in ideal yields. Their structures were confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR), electrospray ionization mass spectrometry (ESI-MS) and elemental analysis. Their liquid-crystalline behaviours before and after complexation with metallic salts were studied by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. Neat compounds 4a and 4b show mesophase with triphenylene column, while complexes of 4a and 4b with metallic salts exhibit no mesophase but higher melting point.  相似文献   

10.
The equilibrium geometries, electronic structures, one- and two-photon absorption (TPA) properties of a series of octupolar complexes with the Cu(I), Zn(II) and Al(III) as coordinate centers and the bis-cinnamaldimine as ligands have been studied using the B3LYP/6-31G(d) and ZINDO-SOS methods. Compared with the dipolar metal complexes, all the octupolar metal complexes (including tetrahedral and octahedral complexes) have relatively large TPA cross-sections, indicating that building octupolar metal complex is an effective route to design of promising TPA material. Lewis acidity of metal center and molecular symmetry are two important factors for enhancement of TPA cross-section of metal complex. Due to the stronger Lewis acidity of Zn(II) than Cu(I) as well as Al(III) than Zn(II), the tetrahedral Zn(II) complex exhibits a TPA cross-section larger than that of the tetrahedral Cu(I) complex, the maximum TPA position of the octahedral Al(III) complex is red-shifted relative to the octahedral Zn(II) complex, and at the same time, the octahedral Al(III) complex has a large TPA cross-section. Compared with the tetrahedral complexes, the TPA cross-sections of the octahedral complexes are enhanced due to the increased number of ligands.  相似文献   

11.
Ag/carbon hybrids were fabricated by the redox of glucose and silver nitrate (AgNO3) in the presence of imidazolium ionic liquid ([C14mim]BF4) under hydrothermal condition. Monodisperse carbon hollow sub-microspheres encapsulating Ag nanoparticles and Ag/carbon cables were selectively prepared by varying the concentration of ionic liquid. Other reaction parameters, such as reaction temperature, reaction time and the mole ratio of silver nitrate to glucose, play important roles in controlling the structures of the products. The products were characterized by XRD, TEM (HRTEM), SEM, energy-dispersive X-ray spectroscopy (EDX), FTIR spectroscopy and a Raman spectrometer. The possible formation mechanism was proposed. The catalytic property of the hybrid in the oxidation of 1-butanol by H2O2 was also investigated.  相似文献   

12.
In this paper, studies on various physical properties, viz., dielectric properties (dielectric constant, loss tan δ, a.c. conductivity σ) over a wide range of frequency and temperature, optical absorption, ESR at liquid nitrogen temperature and magnetic susceptibility at room temperature of Li2O-CaF2-P2O5: Cr2O3 glass ceramics, have been reported. The optical absorption, ESR and magnetic susceptibility studies indicate that the chromium ions exist in Cr5+, Cr4+ and Cr6+ states in addition to Cr3+ state in these samples. The dielectric constant and loss variation with the concentration of Cr2O3 have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analysed by a graphical method and the spreading of dielectric relaxation has been established. The a.c. conductivity in the high-temperature region seems to be connected both with electronic and ionic movements.  相似文献   

13.
Two soluble side‐chain conjugated polythiophenes, poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) and poly{3‐(4‐octyloxy‐phenylethynyl)‐thiophene} (P3OPET) have been synthesized successfully. In P3OPVT and P3OPET, substituted benzene rings are connected with the polythiophene backbone through trans carbon–carbon double bond and carbon–carbon triple bond, respectively. Absorption spectra of the P3OPVT and P3OPET both show two absorption peaks located in UV and visible region, respectively. The results of optical and electrochemical measurements indicate that the conjugated side‐chains can reduce the bandgap effectively. This type of side‐chain conjugated polythiophenes may be promising for the applications in polymer photovoltaic cells and field effect transistors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2206–2214, 2006  相似文献   

14.
We report therein the synthesis and photophysical properties of a new series of two- and tribranched compounds built up from benzene or triphenylamine as central core and electron-withdrawing diazine rings as peripheral group. The arms allowing connection between these two parts are constituted by an ethynylene linker. All these compounds are fluorescent and are of particular interest with generally good quantum yields and good Stokes shifts. Some of them have been tested for two-photon absorption (TPA) properties and had revealed interesting performances.  相似文献   

15.
This work was devoted to the development of a new class of modified polyurethane as an electrical insulating material. For this purpose, NCO‐terminated urethane prepolymers at different NCO contents were prepared and chain extended by 6,6′‐oxybis(2‐aminobenzothiazole) (ABT) to produce thermoplastic polyurethane elastomers. All of the polymers were characterized by FTIR and 1HNMR spectroscopies and examined for their thermal, mechanical, and electrical properties. The dynamic mechanical measurements results showed two glass transitions indicating phase separation. A considerable improvement in the thermal and electrical properties in comparison to common polyurethanes was detected for these polymers. The level of enhancement in the measured properties was related to the polyol molecular weight, hard segment content, and consequently the amount of the introduced urea and benzothiazole moieties. These findings indicated the improved high service temperature performance of these materials as electrical insulator for metallic surfaces. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Three novel conjugated polymers with N‐arylpyrrole as the conjugated bridge were designed and synthesized, which emitted strong one‐ or two‐photon excitation fluorescence in dilute tetrahydrofuran (THF) solution with high quantum yields. The maximal two‐photon absorption (TPA) cross‐sections of the polymers, measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in THF, were 752, 1114, and 1869 GM, respectively, indicating that the insertion of electron‐donating or electron‐withdrawing moieties into the polymer backbone could benefit to the increase of the TPA cross‐section. Their large TPA cross‐sections, coupled with the relatively high emission quantum yields, made these conjugated polymers attractive for practical applications, especially two‐photon excited fluorescence. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
In this paper, one- and two-photon absorption properties as well as the transition nature of a series of donor-π-acceptor-type compounds with trivalent boron as an acceptor have been theoretically studied by using INDO/SDCI method. Our calculations indicate that the four o-methyl moieties on the two mesityl groups play an important part in protecting the trivalent boron from being attacked by oxygen in the air. The trivalent boron containing group can be an all-right electron-acceptor with some bulky groups attached to it. On the basis of geometry optimization and UV–vis spectra, the positions and strengths of two-photon absorption for these molecules were reported.  相似文献   

18.
Two new one-dimensional (1D) inorganic-organic hybrid cobalt (II) phosphites Co(HPO3) (py) (1) and [Co(OH)(py)3][Co(py)2][HPO2(OH)]3 (2) have been prepared under solvothermal conditions in the presence of pyridine (py). Compound 1 crystallizes in the monoclinic system, space group p2(1)/c, a=5.3577(7) Å, b=7.7503(10) Å, c=17.816(2) Å, β=94.327(2)°, V=737.67(16) Å3, Z=4. Compound 2 is orthorhombic, Cmcm, a=16.3252(18) Å, b=15.7005(16) Å, c=13.0440(13) Å, β=90.00° V=3343.4(6) Å3 and Z=4. Compound 1 possesses a 1D ladder-like framework constructed from CoO3N tetrahedral, HPO3 pseudo-pyramids and pyridine ligands. While compound 2 is an unusual inorganic-organic hybrid 1D chain, which consists of corner-shared six-membered rings made of CoO3N3/CoO4N2 octahedra and HPO3 pseudo-pyramids through sharing vertices.  相似文献   

19.
Linear segmented polyurethanes based on poly(butylene adipate)s (PBA) of different molecular weight (Mn 2000, 1000, and 600), 4,4′-diphenylmethane diisocyanate (MDI) and the mesogenic diol 4,4′-bis-(6-hydroxyhexoxy)biphenyl (BHHBP) as well as the unsegmented polyurethane consisting of MDI/BHHBP units have been synthesized and characterized by elemental analysis, 13C-NMR and SEC. The thermal behavior and the morphology were studied by DSC, polarizing microscopy, and DMA. The properties of the MDI-polyurethanes were discussed in relation to the BHHBP chain extended 2,4-TDI-polyurethanes and common 1,4-butanediol chain-extended MDI products. MDI polyurethanes based on PBA (Mn 2000) exhibit a glass transition temperature Tg of about −40°C independent of the hard segment content up to ∼50% hard segments. At higher hard segment contents increasing Tgs were observed. Polyurethanes, based on the shorter polyester soft segments PBA (Mn 1000 or 600), reveal an increase in the glass transition temperatures with growing hard segment content. The thermal transitions caused by melting of the MDI/BHHBP hard segment domains are found at 50 K higher temperatures in comparison with the analogous TDI products with mesogenic BHHBP/TDI hard segments. Shortening of the PBA chain length causes a shift of the thermal transitions to lower temperatures. Polarizing microscopy experiments indicate that liquid crystalline behavior is influenced by both the content of mesogenic hard segments and the chain length of the polyester. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
A novel hyperbranched polyyne (hb‐ DPP ) with triphenylamine as the core, 2,5‐dioctylpyrrolo [3,4‐c]pyrrole‐1,4 (2H,5H)‐dione ( DPP ) as the connecting unit has been designed and synthesized by Glaser‐Hay oxidative coupling reaction, which was characterized by IR, NMR, UV‐vis, FL, and GPC. The polymer exhibits high molecular weight (Mw up to ~6.55 × 104 Da) and is readily soluble in common organic solvents such as toluene, chloroform, tetrahydrofuran, N,N‐dimethyl formamide and so on. The one‐ and two‐photon absorption (TPA) properties have been investigated. The TPA cross section of the polymer was measured by open‐aperture Z‐scan experiment using 140 femtosecond (fs) pulse, and the TPA cross section for hb‐ DPP was determined to be 579 GM per repeating unit at wavelength of 800 nm. In tetrahydrofuran, hb‐ DPP exhibits intense frequency up‐converted fluorescence with the peak located at 584 nm under the excitation of 800 nm fs pulses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4400–4408, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号