共查询到20条相似文献,搜索用时 15 毫秒
1.
《Arabian Journal of Chemistry》2019,12(7):908-931
This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities. 相似文献
2.
Conjugate polymers provide the possibility of exploiting both the chemical and physical attributes of the polymers for membrane-based gas separation. The presence of delocalized π electrons provides high chain stiffness with low packing density, thus making the membrane a rigid structure that favors facilitated transport. Historically, the polymeric membranes were constrained by the tradeoff relationship between gas permeability and gas selectivity. So, different methods were investigated to prepare the membranes that can overcome the limitation. In recent years, electroconductive polymeric membranes have gained attention with their enhanced transportation properties combining the separation behavior depending on both molecular size discrimination as well as the facilitated transport. They offer better selectivity toward polar gases such as CO2 because of the increased solubility. This review is aimed to provide a literature survey on gas separation using conjugate polymers such as polyaniline, polypyrrole, and some derivatives of polythiophenes. It contains various methods used by different researchers to enhance the gas separation properties of the membranes with improved mechanical and thermal stability such as changing the morphology and membrane preparation methods. In addition, it provides the pros and cons of various factors affecting the conjugate polymer membrane performance. The major challenges and future work that can be done in improving the transportation properties through the membrane to achieve viable membranes are also discussed so that they can be used for commercial and practical applications in the future. 相似文献
3.
《Arabian Journal of Chemistry》2023,16(5):104680
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future. 相似文献
4.
《Arabian Journal of Chemistry》2020,13(12):8848-8887
Phthalocyanine (Pc) complexes are an important class of dyes with numerous (e.g., biological, photophysical, and analytical) applications. Among the methods used to improve the properties of these complexes, one should mention the introduction of different substituents, variation of the central metal ion, ligand exchange, and conjugation to nanomaterials (e.g., carbon-based nanomaterials and metal nanoparticles (NPs)). This work briefly reviews Pc complex conjugation to Ag and Au NPs, highlights the different NP shapes, and discusses the diversity of conjugation approaches. Moreover, the use of UV–Vis spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopy to characterize Pc-NP hybrids is summarized. The effect of conjugation on Pc photo-physicochemical properties (fluorescence, singlet oxygen generation, triplet state formation, and optical limiting behavior) is discussed, and future perspectives for the synthesis and applications of new hybrids are provided. 相似文献
5.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity. 相似文献
6.
Judith Monnier Junxian Zhang Fermin Cuevas Michel Latroche 《Current Opinion in Electrochemistry》2022
Hydrides have been used since a long time for solid-state hydrogen storage and electrochemical nickel-metal hydride batteries. Besides these applications, growing attention has been devoted to their development as anode materials, as well as solid electrolytes for Li-ion and other ion batteries. Herein, we review and summarize the recent advances of hydrides as negative electrodes for Ni-MH and A-ion batteries (A = Li, Na), and as electrolyte for all solid-state batteries (ASSB). Metallic hydrides such as intergrowth compounds are highlighted as the best compromise up to now for Ni-MH. Regarding anodes of Li-ion batteries, MgH2, especially its combination with TiH2, provides very promising results. Complex hydrides such as Li-borohydride and related closo-borates and monovalent carborate boron clusters appear to be very attractive as solid electrolytes for Li-based ASSB, whereas closo-hydroborate sodium salts and closo-carboborates are investigated for Na- and Mg-ASSB. Finally, further research directions are foreseen for hydrides in electrochemical applications. 相似文献
7.
Samuel C. Perry Pui-ki Leung Ling Wang Carlos Ponce de León 《Current Opinion in Electrochemistry》2020
CO2 reduction processes continue to be developed for electrosynthesis, energy storage applications, and environmental remediation. A number of promising materials have shown high activity and selectivity to target reduction products. However, the progress has been mainly at a small laboratory scale, and the technical challenges of large scale CO2 reduction have not been considered adequately. This review covers recent advancements in catalyst materials and cell designs. The leading materials for CO2 reduction to a number of useful products are presented with their corresponding cell and reactor designs. The latest efforts to progress to industrially relevant scales are discussed, along with the challenges that must be met for carbon dioxide reduction to be a viable route for mass scale production. 相似文献
8.
Recent progress on material designs merged with nanotechnology and biotechnology strategies has advanced studies of complex biological samples on electrodes for cytochrome P450 (CYP)–driven biocatalytic reactions (e.g. liver membrane fractions, cells, and various organ-specific CYP extracts). In addition, protein engineering of CYP enzymes with their reductase partner in membranes (e.g. baculovirus- or Escherichia coli bacteria–expressed CYP microsomes) and other recombinant strategies (e.g. engineered CYP and reductase fusion domains and site-directed CYP mutagenesis) are promising sustainable approaches for offering abundant sources of CYP enzymes for electrocatalytic applications. The combination of in silico and experimental electroanalytical methods with hyphenated approaches and biological assays can offer early and rigorous profiling of new drugs and specialty chemicals for safe exposure and beneficial use. 相似文献
9.
Olusesan Ojo Micheal H.K. Kengne Marthe C. Fotsing Edwin M. Mmutlane Derek T. Ndinteh 《Arabian Journal of Chemistry》2021,14(7):103213
Vitellaria paradoxa Gaertn. is a multipurpose medicinal plant of the family Sapotaceae, and it has been widely used usually in the clinical traditional medicine as remedy for a wide range of diseases for several decades. In addition, the plant has also found applications in confectionery, cosmetics and soaps, and pharmaceuticals both locally and internationally. V. paradoxa, which has been identified with >150 phytoconstituents, is rich in oleanane-type triterpene acids and glycosides, such as paradoxosides A-E, tieghemelin A, parkiosides A-C, bassic acid, as well as flavonoids such as quercetin and catechin-type compounds. The extracts and the active constituents of V. paradoxa have been investigated for various pharmacological activities, including but not limited to anticancer, melanogenesis-inhibitory, antibacterial, anti-diabetic, antioxidant, anti-inflammatory, anti-diarrhoeal, and antifungal activities. Additionally, V. paradoxa has also been utilized in nanoparticles (NPs) synthesis. These NPs among other things have shown significant antinociceptive and antiedematogenic activities as well as environmental friendly adsorptive properties for the removal of pollutants from pharmaceutical effluents. Overall, this review comprehensively examines the traditional uses, phytochemistry, pharmacology, toxicology, clinical studies, and nanoparticles synthesized from V. paradoxa and their applications. 相似文献
10.
11.
Throughout a lifetime, articular joints experience many loading cycles and are prone to mechanical degradation. To safeguard the cartilage in these joints, the synovial fluid acts as a natural lubricant. However, degenerative joint diseases, like osteoarthritis, alter the composition of synovial fluid, diminishing its protective properties. In such cases, exogenous lubricants or viscosupplements can be injected to enhance the compromised synovial fluid's function. Scientists are now developing next-generation viscosupplements, based on hyaluronic acid (HA), that can better bind to and adhere to cartilage. Additionally, non-HA-based viscosupplements offer benefits over HA-based ones, as they possess more intricate molecular architectures, such as dendrimer or bottlebrush-like structures. These viscosupplements draw inspiration from natural molecules present in synovial fluid, providing them with a distinct advantage. 相似文献
12.
A combination of viscoelastic surfactants with nanoparticles gives a new class of functional self-assembled materials promising for a large variety of applications. Nanoparticles improve the rheological properties of these systems because of the incorporation into the network of entangled wormlike micelles by linking to micellar end-caps, thus leading to elongation or cross-linking of the micelles. The present article reviews recent studies of these hybrid systems. Mechanisms of the interaction of nanoparticles with wormlike surfactant micelles as well as factors favoring the enhancement of rheological properties of viscoelastic surfactants by added nanoparticles are discussed, providing ways for proper design of such systems in the future. It is shown that viscoelastic surfactants modified with nanoparticles display very attractive features for practical applications, in particular, for fracturing fluids in oil recovery. 相似文献
13.
Vijaya Gowri Ayyappan Shashikant Shivaji Vhatkar Somashree Bose Srinivasan Sampath Sujoy K. Das Debasis Samanta Asit Baran Mandal 《印度化学会志》2022,99(1):100278
Bacterial cellulose (BC), derived from kombucha scoby have extraordinary organoleptic properties suitable for development of leather-like materials. An improvement in physical and mechanical property is desirable for the practical applications. This work deals with the treatment of BC by incorporations of three different nanomaterials such as gold nanoparticles (AuNP), silver nanoparticles (AgNP) and graphene oxide (GO). Achieving combined benefits via synergic interactions of different nanomaterials is the major objective herein. While graphene oxide can influence some of the parameters related to mechanical properties, silver nanomaterials can offer antibacterial characteristics. Gold nano materials can bridge the BC/silver/graphene oxide as well as provide the desirable aesthetic colour. Different physical chemical and mechanical characteristics were studied in detail. For example, changes in morphology by imaging fiber network were studied using scanning electron microscopy. Fibre properties were studied by Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD). Elemental composition was studied by X-ray photoelectron spectroscopy (XPS) analysis and Raman analysis. The improvement of hydrophobicity was studied by Contact angle meter. Thermal analysis was performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A Picture was provided in ESI to show the modified material's leather-like appearances. 相似文献
14.
Ratiometric electrochemical,electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection 总被引:1,自引:0,他引:1
Chengxi Zhu Dong Liu Yuye Li Xiuli Shen Libo Li Yang Liu Tianyan You 《Current Opinion in Electrochemistry》2019
Global environmental pollution issue has boosted the development of novel analytical techniques with high efficiency and accuracy for detection of hazardous contaminants. Strategies based on electrochemical, electrochemiluminescent, or photoelectrochemical analysis are among the promising detection approaches to provide rapid and sensitive analysis. Currently, combining ratiometric assay with such strategies can further promote their sensing reliability and reproducibility in complex conditions. This review highlights recent advances of ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical sensors in the past 2 years. Their signal generation strategies and analysis applications, particularly for the environmental contaminant detection, are discussed in detail, and a future prospect in this area from us is also provided. 相似文献
15.
《Arabian Journal of Chemistry》2020,13(2):4082-4091
In present study, an investigation was carried out to develop and validate an analytical method for the selective extraction and determination of griseofulvin (GSF) from plasma samples. For this purpose, a rational approach was made to synthesize and characterize the surface molecularly imprinted polymers (SMIPs). The SMIPs were utilized as solid phase extraction (SPE) sorbents. The SMIPs were prepared by using GSF as template molecule on the surface of modified silica particles through a non-covalent technique. The particles demonstrated high adsorption capacity (119.1 µg/mL), fast adsorption equilibrium time (30 min) and good recognition selectivity for the template drug. The scanning electron microscopy and infrared spectroscopy were used to explain the structural and morphological characteristics of the SMIPs and surface non-imprinted polymers. The SPE method was combined with HPLC for plasma analysis. The method validation results demonstrated that the established method possessed good linearity for GSF ranging from 0.1 to 50 µg/mL (R2 = 0.997). The limit of detection for this method was 0.02 µg/mL for rat plasma samples. The recoveries of GSF from spiked plasma samples were (90.7–97.7%) and relative standard deviations were (0.9–4.5%). Moreover, the SMIPs as selective SPE sorbent can be reused more than 8 times which is a clear advantage over commercial SPE sorbents. Finally, the usefulness of the proposed strategy was assessed by extraction and detection of GSF in real rat plasma samples. 相似文献
16.
《Arabian Journal of Chemistry》2023,16(4):104629
Carapa guianensis is a tree from Meliaceae family traditionally known as andiroba that has a wide range of biological properties, including therapeutic effects, antioxidant activities, insecticidal and repellent effects that can be used in biotechnological approaches to medicine, agriculture, and cosmetic products. Therefore, we aim to explore the biological activities exhibited by this species and their respective biotechnological applications of interest. For this, a systematic review was carried out following the PRISMA guidelines dated from 1993 to 2022 through the Scopus, Web of Science and Agricultural Research Database (Base de Dados da Pesquisa Agropecuária - BDPA), screened for biological activity/bioactive compounds. A total of 129 studies were included in the PRISMA flow analysis. Biological properties and major bioactive compounds, as well as biotechnological approaches could be identified. The biological activity from C. guianensis could be observed in different vegetative parts through diverse methods of extractions. These activities are mainly due to the unsaturated fatty acids and bioactive compounds, such as the limonoids and a small fraction of phenolic compounds. Gedunin-type limonoids, like gedunin and its derivatives, represent the class of compounds that show the highest bioactivities in different applications. 相似文献
17.
18.
《Arabian Journal of Chemistry》2022,15(12):104330
The present study was carried out to design and synthesize a number of novel aromatic carboxamide derivatives of dehydroabietylamine. The preliminary antifungal assay indicated that most of title compounds displayed moderate to good antifungal activity toward the six fungal strains in vitro. Compounds 3i, 3q, 4b and 4d showed significant antifungal activity against Sclerotinia sclerotiorum, with EC50 values ranging from 0.067 ~ 0.393 mg/L. Compounds 3i, 4b and 4d also showed pronounced mycelial growth inhibition activities against B. cinerea and A. solani. Furthermore, in the in vivo assay, compound 4b exhibited brilliant protective activity against S. sclerotiorum-infected rape leaves. Meanwhile, the in vivo bioassay on tomato plants infected by B. cinerea showed that compound 3i and 4d displayed excellent protective activity at 200 mg/L, which were near to boscalid. Primary mechanistic study revealed that 4b could inhibit sclerotia formation as well as reduce the exopolysaccharide level. SEM and TEM analysis indicated that 4b possessed a strong ability to destroy the surface morphology of mycelia, cell structure and seriously interfere with the growth of the fungal pathogen. In addition, 4b exhibited good inhibitory activity (IC50 = 23.3 ± 1.6 μM) toward succinate dehydrogenase (SDH). Molecular modeling study confirmed the binding modes between compound 4b and SDH. The above antifungal results and fungicidal mechanism study revealed that this class of dehydroabietylamine derivatives could be potential SDH inhibitors and lead compounds for novel fungicides development. 相似文献
19.
Ana Fernández-la-Villa Diego F. Pozo-Ayuso Mario Castaño-Álvarez 《Current Opinion in Electrochemistry》2019
Microfluidic and electrochemical technologies have been at the forefront of the development of emerging analytical microsystems. Microfluidics and electrochemistry show a synergistic relationship, empowering their inherent features. Thus, integration of microfluidics and electrochemical (bio)sensors is envisioned as a powerful tandem for boosting the next generation of lab-on-a-chip platforms, including point-of-care and point-of-need systems. In this review, a general overview of the advantages, drawbacks, and gaps as well as remaining challenges and future trends of coupling microfluidics and electrochemical cells is presented. Special attention is given to the manufacturing and scale-up of the integrated devices and all those aspects that can push on the development of true lab-on-a-chip platforms for reaching the industrial domain and actual commercialization. 相似文献