首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface-imprinted core–shell Au nanoparticles (AuNPs) were explored for the highly selective detection of bisphenol A (BPA) by surface-enhanced Raman scattering (SERS). A triethoxysilane-template complex (BPA-Si) was synthesized and then utilized to fabricate a molecularly imprinted polymer (MIP) layer on the AuNPs via a sol–gel process. The imprinted BPA molecules were removed by a simple thermal treatment to generated the imprint-removed material, MIP-ir-AuNPs, with the desired recognition sites that could selectively rebind the BPA molecules. The morphological and polymeric characteristics of MIP-ir-AuNPs were investigated by transmission electron microscopy and Fourier-transform infrared spectroscopy. The results demonstrated that the MIP-ir-AuNPs were fabricated with a 2 nm MIP shell layer within which abundant amine groups were generated. The rebinding kinetics study showed that the MIP-ir-AuNPs could reach the equilibrium adsorption for BPA within 10 min owning to the advantage of ultrathin core–shell nanostructure. Moreover, a linear relationship between SERS intensity and the concentration of BPA on the MIP-ir-AuNPs was observed in the range of 0.5–22.8 mg L−1, with a detection limit of 0.12 mg L−1 (blank ± 3 × s.d.). When applied to SERS detection, the developed surface-imprinted core–shell MIP-ir-AuNPs could recognize BPA and prevent interference from the structural analogues such as hexafluorobisphenol A (BPAF) and diethylstilbestrol (DES). These results revealed that the proposed method displayed significant potential utility in rapid and selective detection of BPA in real samples.  相似文献   

2.
The gold nanostar@silica core–shell nanoparticles conjugated with glucose oxidase (GOx) enzyme molecules have been developed as the surface-enhanced Raman scattering (SERS) biosensor for label-free detection of glucose. The surface-immobilized GOx enzyme catalyzes the oxidation of glucose, producing hydrogen peroxide. Under laser excitation, the produced H2O2 molecules near the Au nanostar@silica nanoparticles generate a strong SERS signal, which is used to measure the glucose concentration. The SERS signal of nanostar@silica∼GOx nanoparticle-based sensing assay shows the dynamic response to the glucose concentration range from 25 μM to 25 mM in the aqueous solution with the limit of detection of 16 μM. The sensing assay does not show any interference when glucose co-exists with both ascorbic acid and uric acid. The sensor can be applied to a saliva sample.  相似文献   

3.
The exploitation of the unique electrical properties of nanowires requires an effective assembly of nanowires as functional materials on a signal transduction platform. This paper describes a new strategy to assemble gold–platinum alloy nanowires on microelectrode devices and demonstrates the sensing characteristics to hydrogen peroxide. The alloy nanowires have been controllably electrodeposited on microelectrodes by applying an alternating current. The composition, morphology and alloying structures of the nanowires were characterized, revealing a single-phase alloy characteristic, highly monodispersed morphology, and controllable bimetallic compositions. The alloy nanowires were shown to exhibit electrocatalytic response characteristics for the detection of hydrogen peroxide, exhibiting a high sensitivity, low detection limit, and fast response time. The nanowire's response mechanism to hydrogen peroxide is also discussed in terms of the synergistic activity of the bimetallic binding sites, which has important implications for a better design of functional nanowires as sensing materials for a wide range of applications.  相似文献   

4.
We investigated the chemisorption of self-assembled monolayers of sulfur-functionalized 4-amino-7-nitrobenzofurazan on gold and silver nanoisland films (NIFs) by means of surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS). The ligand is a push–pull molecule, where an intramolecular charge transfer occurs between an electron-donor and an electron-acceptor group, thus exhibiting nonlinear optical properties that are related to both SERS and SEF effects. The presence of different heteroatoms in the molecule ensures the possibility of chemical interaction with both silver and gold substrates. The SERS spectra suggest that furazan is bound to silver via lone pairs of the nitrogen atoms, whereas the ligand is linked to gold via a sulfur atom. Silver NIFs provide more efficient enhancement of both fluorescence and Raman scattering in comparison with gold NIFs. The present SEF and SERS investigation could provide useful information for foreseeing changes in the nonlinear responses of this push–pull molecule.  相似文献   

5.
In this paper, we report a new strategy for the preparation of surface-enhanced Raman scattering (SERS)-active silver nanoparticles (Ag NPs), using a photochemical method and the presence of chitosan (Ch). First, Ag substrates were subjected to electrochemical oxidation/reduction cycles (ORCs) in deoxygenated aqueous solutions containing 0.1 M HNO3 and 1 g L−1 Ch (pH 6.9, adjusted by adding 1 M NaOH), resulting in Ag+–Ch complexes. These substrates were then irradiated with UV light at various wavelengths to yield the SERS-active Ag NPs. A stronger SERS effect was observed on the SERS-active Ag NPs prepared by using UV irradiation at 310 nm. The pH of the solution and the presence of Ch during the preparation process both affected the resulting SERS activities.  相似文献   

6.
Summary The possibility of the fluorometric determination of hydrogen peroxide using various tetrahydro--carbolines as hydrogen-donating substrates for horseradish peroxidase was examined. A simple and sensitive method has been developed by using 1-methyl-1,2,3,4-tetrahydro--carboline-3-carboxylic acid as a substrate. The fluorescence intensity was proportional to the hydrogen peroxide concentration in the range of 0.05–1 mol/l (30–600 pmol/tube) in the sample solution with a relative standard deviation of 3.8% (0.1 mol/l).  相似文献   

7.
This is a study of adenine–Au and adenine–uracil–Au (neutral, anionic and cationic), applying the B3LYP density-functional approach. In these systems, the interaction is directly related to the charge; so that as the metal atomic charge increases, the bond strength also increases. Neutral molecules are weakly bonded, the interaction in the case of cations is mainly electrostatic and in the case of the anions, the extra electron is localized on the metal atom and consequently, non-conventional hydrogen bonds are formed. In the case of adenine–Au (anion), the H dissociation energy is similar to the electron dissociation energy, and therefore both reactions may be possible. Moreover, the Au anionic atom modifies the hydrogen bonds of the uracil–adenine base pair. This may be significant in the study of point mutations that may occur in the Watson–Crick dimmer of nucleic basis. The electron-donator properties of these compounds are analyzed with the aid of the donator–acceptor map (DAM), previously described. Adenine–Au, uracil–Au and adenine–uracil–Au are more effective electron donors, but poorer electron acceptors than adenine, uracil and adenine–uracil. If the electron acceptor properties of carotenoids such as β-carotene and astaxanthin are compared, there are indications that astaxanthin may act as an oxidant instead of an antioxidant with the uracil–adenine base pair. The oxidation of nucleic acid bases by carotenoids may have important consequences, as oxidative damage of DNA and RNA appears to be linked to cancer. This is something that demands further studies and for this reason, work concerning the reactivity of carotenoids with DNA-nitrogen bases is in progress.  相似文献   

8.
Hydrogen peroxide has strong infrared (IR) transitions ν(6) and its combination band ν(2)+ν(6), which may provide a unique opportunity to implement doubly vibrationally enhanced (DOVE) four wave mixing (FWM) for directly measuring hydrogen peroxide in spectrally overcrowded mixtures. In this work, the magnitude of the DOVE third-order susceptibility χ(3) was theoretically estimated. By using a FWM interferometric method, one of the strongest Raman bands, O-O stretch ν(3) Raman χ(3) of 30 wt % H(2)O(2), was first measured to be 1.2 × 10(-14) esu. The Raman χ(3) of ν(2) was then determined to be 5.3 × 10(-15) esu based on their relative Raman intensities. The resulting Raman χ(3) of ν(2) was used to calculate the DOVE χ(3) of (ν(6), ν(2)+ν(6)), together with the dipolar moments of the two IR transitions determined from IR absorption measurement. The calculated value of DOVE-IR χ(3) was 1.1 × 10(-13) esu for pure H(2)O(2), about 1.5 times larger than that of the strong ring breathing Raman band of benzene. The large DOVE χ(3) suggests the feasibility of direct measurement of hydrogen peroxide in an aqueous environment using DOVE four wave mixing.  相似文献   

9.
The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.  相似文献   

10.
Ag@C core–shell structure composites were successfully synthesized by hydrothermal method, and then Ag nanoparticles were decorated on the surface of Ag@C by reduction of AgNO3. The morphology, composition and structure of the Ag@C@Ag composites were characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Cyclic voltammetry and amperometry were used to evaluate the electrocatalytic performance of the Ag@C@Ag/GCE for detection of H2O2. Meanwhile, a new electrochemical method of zero current potentiometry was used for electrochemical detection of H2O2. The linear range and the detection limit were from 0.2 to 10, and 0.07 μM, respectively.  相似文献   

11.
A variety of tertiary and secondary amines were efficiently oxidized to their corresponding N-oxides and nitrones, respectively, using the trichloroacetonitrile–hydrogen peroxide system. The in situ generated trichloromethylperoxyimidic acid is the active reagent for the oxidation processes.  相似文献   

12.
We recorded the Raman spectra at the low temperature (84 K) and determined the directional dispersion of extraordinary phonons of β-BaB2O4 crystal. The vibration—intensity relations between the (B3O6)3− ring and the β-BaB2O4 crystal are analysed. The G—F matrix method was used to calculate the vibrational frequencies of the (B3O6)3− ring in the β-BaB2O4 crystal. The assignment of internal vibration modes and vibrational symmetry are presented.  相似文献   

13.
This work reports on a novel chitosan–hematite nanotubes composite film on a gold foil by a simple one-step electrodeposition method. The hybrid chitosan–hematite nanotubes (Chi–HeNTs) film exhibits strong electrocatalytic reduction activity for H2O2. Interestingly, two electrocatalytic reduction peaks are observed at −0.24 and −0.56 V (vs SCE), respectively, one controlled by surface wave and the other controlled by diffusion process. The Chi–HeNTs/Au electrode shows a linear response to H2O2 concentration ranging from 1 × 10−6 to 1.6 × 10−5 mol L−1 with a detection limit of 5 × 10−8 mol L−1 and a sensitivity as high as 1859 μA μM−1 cm−2.  相似文献   

14.
The expedience of the target-specific control of the properties of a medium (using micellar and aqueous–organic media), in which an indicator process providing the background for the operation of a spectrophotometric sensor based on a polyelectrolyte complex (horseradish peroxidase–chitosan) is conducted, is shown experimentally and proved by calculations of kinetic parameters of the enzymatic reaction. The application of the sensor ensures an increase in the sensitivity of the determination of peroxides of different nature and structures (e.g., hydrogen and urea peroxides, benzoyl peroxide, 2-butanone peroxide and tertbutyl hydroperoxide) in complex matrixes. The proposed approach allows the analyst not only to regulate the performance characteristics of the developed procedures for the determination of peroxides depending on the analytical task, but also to extend the range of test samples (including those insoluble in water) analyzed with no sample preparation.  相似文献   

15.
In this work, an initial-rate spectrophotometric method and response surface methodology (RSM) were combined for modelling and optimizing the experimental parameters of the enzymatic Emerson–Trinder reaction, for the determination of hydrogen peroxide. This spectrophotometric indicator reaction is currently used in biotechnology for the determination of phenolic compounds (e.g. in industrial samples) and also for determination of various substrates (e.g. in clinical chemistry). Using 4-iodophenol as a hydrogen donor in this reaction, the quality of the generated second-order polynomial response model equation was checked by the kinetic assay of H2O2 in real samples (e.g. cosmetic and human pooled serum samples), where their resulting satisfactory analytical characteristics were reported.  相似文献   

16.
Cytochrome c was immobilized on screen-printed thick-film gold electrodes by a self-assembly approach using mixed monolayers of mercaptoundecanoic acid and mercaptoundecanol. Cyclic voltammetry revealed quasi-reversible electrochemical behavior of the covalently fixed protein with a formal potential of +10 mV vs. Ag/AgCl. Polarized at +150 mV vs. Ag/AgCl the electrode was found to be sensitive to superoxide radicals in the range 300–1200 nmol L–1. Compared with metal needle electrodes sensitivity and reproducibility could be improved and combined with the easiness of preparation. This allows the fabrication of disposable sensors for nanomolar superoxide concentrations. By changing the electrode potential the sensor can be switched from response to superoxide radicals to hydrogen peroxide—another reactive oxygen species. H2O2 sensitivity can be provided in the range 10–1000 mol L–1 which makes the electrode suitable for oxidative stress studies.  相似文献   

17.
Nanofilms of titanium dioxide (TiO2) nanoparticles that mediate the assembly of polystyrene (PS) nanoparticles for immobilizing hemoglobin (Hb) on carbon ionic liquid electrode have been developed. Fourier transform infrared spectroscopy shows that Hb retains its native structure in TiO2–PS nanofilms. Scanning electron microscopy reveals that the nanofilms possess uniform morphology and Hb is immobilized on the surface of the nanofilms. Electrochemical investigation of the biosensor indicates that the direct electrochemistry of hemoglobin is realized on the nanofilms, and there is a formal potential of ?0.320 V in deaerated buffer solutions; the biosensor shows good electrocatalytic activity toward the reduction of hydrogen peroxide with a linear range from 0.5 to 640 μM, a detection limit of 0.2 μM (S/N = 3) and a sensitivity of 103 μA mM?1. Thus, the nanofilms will have potential application in the design of novel electrochemical biosensors.  相似文献   

18.
An electrochemiluminescence (ECL) assay has been developed for highly sensitive and selective detection of tumor cells based on cell-SELEX aptamer-target cell interactions through a cascaded amplification process by using bio-bar-code Au–Fe3O4 as amplification station. Firstly, bio-bar-code toehold-aptamer/DNA primer/Au–Fe3O4 (TA/DP/Au–Fe3O4) nanoconjugates are fabricated with a ratio of 1:10 to efficiently avoid cross-linking reaction and recognize target cells, which are immobilized on the substrate by hybridizing aptamer to capture probe with 18-mer. Through strand displacement reaction (SDR), the TA/DP/Au–Fe3O4 composites further act as the amplification station to initiate rolling circle amplification (RCA). As a result, on the surface of TA/DP/Au–Fe3O4, a large number of Ru(bpy)2(dcbpy)NHS-labeled probes hybridize to RCA products, which are easily trapped by magnetic electrode to perform the magnetic particle-based ECL platform. Under isothermal conditions, this powerful amplification strategy permits detection of Ramos cells as low as 16 cells with an excellent selectivity. Moreover, analysis of Ramos cells in complex samples and whole blood samples further show the great potential of this ultrasensitive approach in clinical application involving cancer cells-related biological processes.  相似文献   

19.
We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.  相似文献   

20.
LiNi0.475Mn0.475Al0.05O2 cathode material was prepared by solid-state reaction using Ni–Mn–Al–O solid solution as precursor. The solid solution is of spinel structure, in which nickel, manganese, and aluminum are sufficiently mixed at atomic level. Rietveld refinement of X-ray diffraction data revealed that Al doping in LiNi0.5Mn0.5O2 was significantly effective to decrease the degree of Li/Ni cation mixing. XPS analysis showed that the valence states of nickel and manganese were mainly +2 and +4, respectively. LiNi0.475Mn0.475Al0.05O2 delivered a stable capacity of about 206 mAh g−1 with high reversibility. High-rate capability test was also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号