首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, chemical interface damping (CID) has been proposed as a new plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. It has been considered essential, owing to its potential implications in efficient photochemical processes and sensing experiments. However, thus far, studies focusing on controlling CID in single gold nanoparticles have been very limited, and in situ reversible tuning has remained a considerable challenge. In these scanning electron microscopy-correlated dark-field spectroscopic measurements and density functional theory calculations, cucurbit[7]uril (CB[7])-based host–guest supramolecular interactions were employed to examine and control the CID process using monoamine-functionalized CB[7] (CB[7]-NH2) attached to single gold nanorods (AuNRs). In situ tuning of CID through the CB[7]–oxaliplatin complexation, which can result in the variation of the chemical nature and electronic properties of adsorbates, was presented. In addition, in situ tuning of CID was demonstrated through the competitive release of the oxaliplatin guest from the oxaliplatin@CB[7] complex, which was then replaced by a competitor guest of spermine in sufficient amounts. Furthermore, nuclear magnetic resonance experiments confirmed that the release of the guest is the consequence of adding salt (NaCl). Thus, in situ reversible tuning of CID in single AuNRs was achieved through successive steps of encapsulation and release of the guest on the same AuNR in a flow cell. Finally, single CB[7]-NH2@AuNRs were presented as a recyclable platform for CID investigations after the complete release of guest molecules from their host–guest inclusion complexes. Therefore, this study has paved a new route to achieve in situ reversible tuning of CID in the same AuNR and to investigate the CID process using CB-based host–guest chemistry with various guest molecules in single AuNRs for efficient hot-electron photochemistry and biosensing applications.

This study has paved a new route to achieve in situ reversible tuning of chemical interface damping (CID) in the same gold nanorod (AuNR) and to investigate the CID process using cucurbituril (CB)-based host–guest chemistry with various guest molecules in single AuNRs.  相似文献   

2.
Gold nanorods (AuNRs) are a particularly interesting class of nanomaterials because their dimensions and size-dependent optical properties make them ideally suited for many applications. AuNRs are typically synthesized using seeded growth approaches, in which a small spherical gold nanoparticle seed grows anisotropically into a rod-shaped particle. Using AuNRs themselves as seeds for the growth of other anisotropic shapes has been demonstrated but is relatively little-explored. In this study, we show that AuNRs grown using a common method (silver-assisted seeded growth) cannot be used as seeds in the synthesis of higher aspect ratio AuNRs. Instead, the seed AuNRs grow isotropically, providing a new synthetic approach to precisely tune the absolute dimensions of the final AuNRs. We furthermore show that the dimensions of the AuNRs are determined by the reaction conditions at very early times (<10?min), and that perturbing the growth solution beyond these times has little influence on the final AuNR properties. The observation of these behaviors may be relevant to ongoing investigations of AuNR growth mechanisms.  相似文献   

3.
本文利用原位液体室透射电子显微镜实时观察了液态下金纳米棒/石墨烯复合物的动态自组装行为。结果表明,由于电荷吸引力,金纳米棒倾向于通过尖端接近方式靠近石墨烯的边缘。组装结构形成以后,金纳米棒与石墨烯边缘可以发生相对旋转,其中金纳米棒边缘贴合石墨烯边缘的结构更稳定,并且没有显示金纳米棒与石墨烯边缘之间的相对角度随时间的变化。观察到了自组装结构的漂移运动,与较小尺寸的自组装结构相比,较大尺寸的结构显得更难以通过液体流动推动运动,并且其运动更容易因为来自液体室窗口基底的阻力而慢下来。利用液体室透射电镜进一步观察石墨烯折叠结构,观察结果表明折叠结构可随时间在液体中打开和闭合,导致固定在石墨烯层上的金纳米棒表现出与石墨烯之间的明显相对位置变化。总体上,自组装结构非常稳定,并且在液体中没有表现出任何的分离行为。进一步,将金纳米棒/石墨烯复合物用作催化剂,在4-硝基苯酚催化还原实验中显示出比单纯金纳米棒更好的催化性能。投料质量比为1:5的金纳米棒/石墨烯复合物表现出最佳性能,表观速率常数值为0.5570min~(-1),是单纯金纳米棒的8倍。这一显著改善与优化稳定的金纳米棒/石墨烯复合物结构密切相关。原位液体室透射电镜为分析液体中复杂的自组装行为,及未来的高性能复合催化剂材料的开发,提供了一种强有力的表征方法。  相似文献   

4.
Organization of gold nanoobjects by oligonucleotides has resulted in many three-dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self-regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four-dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy-dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well-defined core–satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs.  相似文献   

5.
Direct electrochemistry and electrocatalysis of myoglobin (Mb) on a gold nanorod (AuNR)‐decorated carbon ionic liquid electrode (CILE) were studied in this article. The fabricated Nafion/Mb/AuNRs/CILE was used as an electrochemical biosensor for determining trichloroacetic acid (TCA) and sodium nitrite (NaNO2). AuNRs exhibited high metal conductivity, and acted as the bridge between electrochemical active centers of Mb and the substrate electrode with the electron transfer rate accelerated. Electrochemical performances of Nafion/Mb/AuNRs/CILE were checked in pH 3.0 phosphate buffer solution with the electrochemical parameters calculated. Low detection limits and wide linear ranges were obtained in electrocatalytic investigations of different catalytic substrates including TCA and NaNO2, which exhibited potential applications in actual sample detection.  相似文献   

6.
Programmable positioning of one-dimensional (1D) gold nanorods (AuNRs) was achieved by DNA directed self-assembly. AuNR dimer structures with various predetermined inter-rod angles and relative distances were constructed with high efficiency. These discrete anisotropic metallic nanostructures exhibit unique plasmonic properties, as measured experimentally and simulated by the discrete dipole approximation method.  相似文献   

7.
We have observed the rotational dynamics of single protein‐coated gold nanorods (AuNRs) on C18‐modified silica surfaces in real time by dual‐channel polarization dark‐field microscopy. Four different rotational states were identified, depending on the apparent strength of interactions between the AuNRs and the surface. The distributions of the states could be regulated by adjusting the salt concentration, and the state transitions were verified by monitoring the entire desorption process of a single AuNR. Our study provides insight into the interfacial orientation and dynamics of nanoparticles and could be useful for in vitro biophysics and the separation of proteins.  相似文献   

8.
Organization of gold nanoobjects by oligonucleotides has resulted in many three‐dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self‐regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four‐dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy‐dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well‐defined core–satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs.  相似文献   

9.
Ge  Feng  Xue  Jianfeng  Wang  Zonghua  Xiong  Bin  He  Yan 《中国科学:化学(英文版)》2019,62(8):1072-1081
The plasma membrane possesses a complicated structure, on which the protein clusters are randomly but orderly distributed to maintain the regular morphology and function of cells. Investigating the detailed dynamic behaviors of nanoparticles(NPs) on cytomembrane is of great importance to understand cellular mechanisms and advance the bio-nano technologies for drug delivery, photothermal therapy, immunotherapy, etc. In this work, to study the dynamic heterogeneous interactions between NPs and cell membrane with high resolution, we established a simple method to efficiently track the translational and rotational diffusion of individual gold nanorods(AuNRs) on cell membranes. This method is based on that an anisotropic AuNR appears as a colored spot under a darkfield microscope(DFM) equipped with a color camera. While obtaining its lateral position, the polar angle of the AuNR can be calculated simultaneously from intensity difference between the R and G channels. Careful analysis shows that the lateral motion of single AuNRs do not follow normal Brownian diffusion, which could be attributed to their hop diffusion in the dynamically varying picket-fence structure of the live cell membrane. Furthermore, 4 different rotationtranslation patterns of the AuNR are observed due to spatiotemporal heterogeneity of the cytomembrane. This simple but robust method for simultaneously obtaining the location and orientation of anisotropic plasmonic nanoparticles could be further applied to the analysis of complicated biological and biomedical processes.  相似文献   

10.
金纳米粒子(AuNPs)是构建用于诊断和治疗的纳米药物/探针的理想纳米材料之一,因此研究AuNPs与细胞的相互作用具有重要意义。 本文详细分析了金纳米簇(AuNCs)、球形金纳米粒子A(AuNPss)、金纳米球壳(AuNSs)和金纳米棒(AuNRs)等不同形貌的Au NPs对不同细胞模型的细胞毒性;讨论了AuNPs的理化性质(大小、形状、化学功能和表面电荷)对其细胞毒性的影响。 总结了AuNP细胞毒性研究遇到的挑战并提出相应解决方法。  相似文献   

11.
A facile and multi-response strategy for studying the transformations of human telomere DNA from single strand (ss) to double strand (ds) and G-quadruplex has been established by using positively charged gold nanorod (AuNR) as an optical label. The conformation change information of the telomere DNA was transferred into multiple optical signals, including changes in fluorescence emission, near infrared (NIR) absorption, plasma resonance light scattering (PRLS) and dynamic light scattering (DLS) response. The formations of dsDNA and G-quadruplex DNA induced fluorescence quenching of dye on DNA, and were accompanied by the intensity decrease and blue shift of the longitudinal absorption peak of AuNRs. Meanwhile, PRLS and DLS results revealed slightly increased AuNR aggregation due to increased charge density of dsDNA and G-quadruplex DNA as compared to ssDNA. Control experiment suggests that the AuNR-based assay is highly sequence specific; and the high sensitivity allows the study of human telomere DNA at a concentration as low as 58 nM.  相似文献   

12.
The objective of this study is to develop efficient pH-sensitive hydrogel based on aminated chitosan (AmCs) and gelatin (Gel) biopolymers for oral drug delivery. Herein, AmCs was chemically crosslinked with gelatin (Gel) biopolymer with different ratios, while their structures, thermal profiles and morphological properties were investigated by FTIR, TGA and SEM characterization tools, respectively. Moreover, gel-content, crosslinking density and rheological analysis were also performed. The results clarified that the developed AmCs-Gel crosslinked hydrogel displayed variable pH-sensitive swelling profiles. By increasing AmCs ratio, the swelling ratio was boosted at pH 1.2 and declined at pH 7.4. Besides, by increasing gelatin ratio in the hydrogel matrix, the loading efficiency of Oseltamivir phosphate (as a model of drug) was augmented and reached maximum value of 79.0% by AmCs-Gel (2:3) crosslinked hydrogel. The in vitro drug release profiles were investigated for 6 h in simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. Variable release profiles were realized depending on variation of AmCs and Gel ratios in the crosslinked hydrogel matrix. Finally, the formulated smart crosslinked AmCs-Gel hydrogels demonstrated acceptable biodegradability with no cellular toxicity, suggesting their applicability as pH-sensitive oral drug carriers.  相似文献   

13.
Guo L  Huang Y  Kikutani Y  Tanaka Y  Kitamori T  Kim DH 《Lab on a chip》2011,11(19):3299-3304
Herein, a simple and effective approach is reported for the in situ generation and regeneration of a Au nanorod (AuNR) monolayer inside a glass/silica-based, closed-surface flow channel. The density of the AuNR monolayer in the flow channel can be easily modified by varying the concentration of the AuNR and the cetyltrimethylammonium bromide as well as the incubation time. The fabricated AuNR monolayer in the flow channels was stable under harsh conditions, such as in extreme pH, organic solvents and at a fast flow rate. In addition, the flow channel could be reused by removing the immobilized AuNRs via the injection of diluted aqua regia or potassium iodide; the AuNR monolayer can subsequently be regenerated. The AuNRs in the closed flow channel were further exploited as a label-free detection method for a clinical biomarker, neutrophil gelatinase-associated lipocalin (NGAL), based on single-nanoparticle plasmonic assay. The corresponding limit of detection for NGAL was measured to be 8.5 ng mL(-1) (~340 pM) based on a signal-to-noise ratio of 3. The estimated recovery of NGAL in human serum and urine was higher than 80%, which indicates that this technique could potentially be used for the diagnosis of acute kidney injury.  相似文献   

14.
To evaluate the anti-diabetic effect of Fritillaria cirrhosa gold nanoparticles on Streptozotocin (STZ) stimulated diabetic preclinical models. The albino rats of either sex were equally distributed to five different groups. Group-I represented as Control; Group-II represented as diabetic control (STZ alone); Group-III represented as 10 mg/kg body weight of Fritillaria cirrhosa gold nanoparticles + diabetes; Group-IV represented as 20 mg/kg body weight of Fritillaria cirrhosa gold nanoparticles + diabetes; Group-V represented as 0.1 mg/kg body weight of glibenclamide + diabetes. The animals were killed after the experimental period. The blood and organs samples were gathered and stored for the additional investigations. The gold nanoparticles were inspected via the UV spectrophotometer, HR-TEM, XRD and FT-IR techniques. The bodyweight, kidney and liver weight were tabulated. The food and water consumption were monitored in all the experimental rats. The serum markers, hepatic markers and renal markers were quantified in both normal and investigational rats. The lipid peroxidation and antioxidant status were quantified in the control and experimental rats. The histopathological alterations were also studied in all the experimental animals. The standard drug glibenclamide was used to compare the synthesized AuNPs. The study revealed that the AuNPs treatment restores the serum, hepatic and renal marker in the STZ-challenged diabetic rats. The AuNPs treatment modulates the antioxidants level and decreased the lipid peroxidation by its antioxidant properties. The pathology results revealed that the AuNPs treatment induces the regeneration of islets cells of pancreas in the experimental rats. The research study proved that the Fritillaria cirrhosa AuNPs exerts anti-diabetic properties.  相似文献   

15.
Gold nanoparticles (AuNPs) have shown a potential for biological applications due to their biocompatibility and high efficiency in drug delivery. Most of the times, the chemical routs are being used to synthesize the AuNPs products. In this paper, eco-friendly non-chemical rout was used to prepare AuNPs by utilizing hibiscus and curcumin extracts as reducing and stabilizing agents, and subsequently their anticancer activities were investigated. The synthesized AuNPs were characterized by using ultraviolet–visible spectroscopy (UV–Vis spectroscopy), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). UV–Vis spectroscopy analysis confirmed the characteristics absorption peak of gold, and FTIR findings were highlighted the characteristics boding. SEM and TEM analyses showed that the particles were predominantly spherical in shape. The particles were well dispersed when they were prepared under Hibiscus extracts with average size ~ 13 nm. An interesting morphology was observed when AuNPs were prepared with curcumin, where particles displayed an interconnected morphology (average size ~ 18 nm). The anticancer cell activity of AuNPs was studied against human colorectal carcinoma cells (HCT-116) and breast cancer cells (Michigan Cancer Foundation-7 (MCF-7)). The results of anticancer study showed that the treatment of cancer cells with AuNPs decreased the number of cells significantly as compared to control cells. The AuNPs -Hibiscus specimen showed a better inhibiting property than AuNPs -Curcumin, which is attributed to their uniform dispersion and small size.  相似文献   

16.
Nanoscience research aims to produce nanoparticles without adverse effects for medical applications. The pulsed laser ablation (PLA) technique was utilized in this study to synthesize gold nanoparticles (AuNPs) using bovine serum albumin (BSA) in simulated body fluid (SBF) at the fundamental wavelength of the Nd: YAG laser (1064 nm). BSA acted as a stabilizer, reducing and capping agent to produce spherically shaped AuNPs (diameter 3–10 nm). The successful synthesis of AuNPs was confirmed through color changes and UV–vis spectroscopy. The agglomeration and precipitation of AuNPs are attributed to the presence of BSA in the solution, and electrostatic repulsion interactions between BSA and Au nanoclusters. The effect of salt concentration of SBF on BSA stability as well as the interaction of BSA conjugated AuNPs to form complexes was studied using molecular dynamic simulations. Our results show that the stability of AuNPs-BSA conjugates increase with the salt concentration of BSA. Moreover, the synthesized AuNPs exhibit low toxicity and high biocompatibility, supporting their application in drug delivery. Investigation of the cytotoxic effect of the synthesized AuNPs show that normal fibroblast cells (L929) remain intact after treatment whereas a dose-dependent inhibition effect on the growth of cervix cancer cells (HeLa) is observed. In general, this study presents an effective, environmentally-friendly, and facile approach to the synthesis of multifunctional AuNPs using the PLA technique, as a promising efficacious therapeutic treatment of cervical cancer.  相似文献   

17.
In this paper, using thiolated graphene oxide (GO‐O‐SH) as substrate, gold nanorods (AuNRs) covalently linked to the GO surface by in‐situ seed growth method were first reported. The as‐prepared composites were characterized by UV–vis spectrum, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT‐IR). Experimental results indicated that the introduction of short flexible organic chain between GO and AuNRs contributed to the homogenous synthesis of gold rods, and uniform gold nanorods with aspect ratio within 3~8 were covalently linked to the surface of GO with high stability and yield. The strategy represented an outstanding improvement in comparison to the traditional route for fabricating GO@AuNRs composites. Furthermore, based on coupling of the two nanomaterials, the composites could act as high sensitive Raman probe with limit of detection (LOD) reaching 1 × 10?12 M.  相似文献   

18.
Application of nanoparticles in drug delivery has become an emerging phenomenon. This is typically achieved either via custom made nanoparticles or through the functionalization of pre-synthesized nanoparticles with the pharmaceutically active ingredients. In this study, Pregabalin, which is the active pharmaceutical ingredient of commercially available drug Lyrica, is used to functionalize pre-synthesized gold nanoparticles (AuNPs). The work was divided into two parts. The first part determined by synthesis of AuNPs. The second part was achieving conjugation of the AuNPs with Pregabalin to obtain nanocomposites (AuNPs-PGN). AuNPs formed were nanosized, spherical in shape, with a particle size ~35 nm. The probable nanocomposite formation takes place by conjugation between AuNPs and the carboxyl group (COOH) of Pregabalin.  相似文献   

19.
The goal of this research was to develop, fabricate and analyze polymeric nanoparticles for the administration of methotrexate (MTX). Linseed mucilage and chitosan nanoparticles (NPs) were prepared using a slightly modified polyelectrolyte complex (PEC) method. The size, shape, and encapsulation effectiveness of the resultant nanoparticles were measured. MTX release profiles at gastrointestinal pH (1.2 and 7.4) and tumor pH (5.5) were examined to determine the targeted potential of NPs as pH-responsive nanocarriers. Zeta analysis showed that nanoparticles prepared by PEC have a size range of 192.1 nm to 246 nm, and PDI was 0.3 of the optimized formulation, which showed homogenous nature of prepared nanoparticles formulation. The findings demonstrated that NPs have a low polydispersity index and a positive zeta potential (PDI). The in-vitro release of the drug indicated a pH-dependent, sustained drug release up to 24 h. Blank LSMCSNPs had almost no in-vivo cytotoxicity for 14 days, while optimum MTX loaded NPs had strong antitumor effects on HepG2 and MCF-7 cells as measured by the MTT assay. Cell apoptosis induction was also checked and MCF-7 cells treated with MTX-LSMCSNPs had a significantly greater rate of apoptosis (21.2 %) than those treated with MTX alone (14.14 %). The findings show that LSMCSNPs could be a potential delivery mechanism for methotrexate to cancer cells in a secure, steady, and ideally controlled manner to improve therapeutic outcomes.  相似文献   

20.
We developed a new simple and sensitive assay for lysozyme based on gold nanoparticle plasmon resonance light scattering (PRLS) measurement and naked-eye detection using for the first time the lysozyme DNA aptamer as the recognition element. Lysozyme DNA aptamer could stabilize gold nanoparticles (AuNPs) at high ionic strength. Introducing lysozyme to the system easily triggered the aggregation of AuNPs, producing a red-to-blue color change of the solution, red-shifted plasmon absorption, and enhanced plasmon resonance light scattering. The linear range was found to be 0.2∼4 nM for 0.7 nM AuNPs, 0.3∼6 nM for 1.4 nM AuNPs and 0.6∼8 nM for 2.1 nM AuNPs. About 0.1 nM lysozyme can produce an observable enhancement of PRLS signal. For visual detection, 1 nM lysozyme can produce a very distinctive color change. Satisfactory recoveries were obtained for simulated saliva and diluted urine samples, indicating that the method has potential for analyses of clinical samples. The simplicity and high sensitivity that are consistent with the resources and needs of many laboratories makes this method a good choice for routine analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号