首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd−C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si−O−C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.  相似文献   

2.
A systematic study on the selective semihydrogenation of alkynes to alkenes on shape‐controlled palladium (Pd) nanocrystals was performed. Pd nanocrystals with a cubic shape and thus exposed {100} facets were synthesized in an aqueous solution through the reduction of Na2PdCl4 with L ‐ascorbic acid in the presence of bromide ions. The Pd nanocubes were tested as catalysts for the semihydrogenation of various alkynes such as 5‐decyne, 2‐butyne‐1,4‐diol, and phenylacetylene. For all substrates, the Pd nanocubes exhibited higher alkene selectivity (>90 %) than a commercial Pd/C catalyst (75–90 %), which was attributed to a large adsorption energy of the carbon–carbon triple bond on the {100} facets of the Pd nanocubes. Our approach based on the shape control of Pd nanocrystals offers a simple and effective route to the development of a highly selective catalyst for alkyne semihydrogenation.  相似文献   

3.
Stereoselective alkyne semihydrogenations are attractive approaches to alkenes, which are key building blocks for synthesis. With regards to the most atom-economic reducing agent dihydrogen (H2), only few catalysts for the challenging E-selective alkyne semihydrogenation have been disclosed, each with a unique substrate scope profile. Here, we show that a commercially available nickel catalyst facilitates the E-selective alkyne semihydrogenation of a wide variety of substituted internal alkynes. This results in a simple and broadly applicable overall protocol to stereoselectively access E-alkenes employing H2, which could serve as a general method for synthesis.  相似文献   

4.
Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2′-bipyridine-5,5′-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅)NiII(μ2-H)2NiII(bpy⋅) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.  相似文献   

5.
陈莲芬  兴旺  康健 《化学通报》2022,85(5):553-559
炔烃的半氢化反应在有机合成和精细化工领域具有重要地位,如何同时兼顾反应活性和选择性仍存在很大挑战。目前已有多种材料被应用于相关催化,其中金属-有机骨架(MOFs)及其复合材料受到越来越多关注。MOFs的多孔性、结构可修饰性、空间限域效应、协同催化等优点,使其在炔烃的半氢化反应中表现出独特的应用前景。本文综述了MOFs及其复合材料在炔烃的半氢化反应生成烯烃过程中的应用,主要根据活性催化位点的类别展开介绍,重点阐述了不同体系中催化效果和结构之间的关系。  相似文献   

6.
The disproportionation of formic acid to methanol was unveiled in 2013 using iridium catalysts. Although attractive, this transformation suffers from very low yields; methanol was produced in less than 2 % yield, because the competitive dehydrogenation of formic acid (to CO2 and H2) is favored. We report herein the efficient and selective conversion of HCOOH to methanol in 50 % yield, utilizing ruthenium(II) phosphine complexes under mild conditions. Experimental and theoretical (DFT) results show that different convergent pathways are involved in the production of methanol, depending on the nature of the catalyst. Reaction intermediates have been isolated and fully characterized and the reaction chemistry of the resulting ruthenium complexes has been studied.  相似文献   

7.
We reported a selective semihydrogenation (deuteration) of numerous terminal and internal alkynes using H2O (D2O) as the H (D) source over a Pd-P alloy cathode at a lower potential. P-doping caused the enhanced specific adsorption of alkynes and the promoted intrinsic activity for producing adsorbed atomic hydrogen (H*ads) from water electrolysis. The semihydrogenation of alkynes could be accomplished at a lower potential with up to 99 % selectivity and 78 % Faraday efficiency of alkene products, outperforming pure Pd and commercial Pd/C. This electrochemical semihydrogenation of alkynes might proceed via a H*ads addition pathway rather than a proton-coupled electron transfer process. The decreased amount of H*ads at a lower potential and the more preferential adsorption of the Pd-P to C≡C π bond than C=C moiety resulted in the excellent alkene selectivity. This method was capable of producing mono-, di-, and tri-deuterated alkenes with up to 99 % deuterium incorporation.  相似文献   

8.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   

9.
Silica-supported, bimetallic palladium-copper catalysts were prepared in solution under mild conditions by reacting lithium di(4-tolyl)cuprate with palladium acetate in the presence of silica particles. Small bimetallic palladium-copper particles were deposited on the silica surface as confirmed with TEM-EDAX and EXAFS. The new material has been applied as catalyst in the liquid-phase semihydrogenation of mono- and disubstituted alkynes and showed high selectivity toward the cis-alkenes. The influence of addition of quinoline or potassium hydroxide to the semihydrogenation reaction mixture and the effects of exposure of the catalyst to air before use have been investigated.  相似文献   

10.
Ir complexes are important homogeneous catalysts for formic acid (FA) dehydrogenation. This paper reports that the activity of Ir complexes can be greatly improved through the activation by trace amounts of oxygen. After activation the activity of the heterodinuclear Ir–Ru catalyst increased 18-fold whereas for the mononuclear catalyst a 23-fold increase was observed. Oxygen is the key factor for the activation. But an excessive concentration of oxygen has a negative effect on the activity. There is an optimal concentration of H2O2 for the activation of Ir complex catalysts in HCOOH dehydrogenation. A very low concentration of oxygen (2.4 × 10–6 M) is needed for the activation of the heterodinuclear Ir–Ru catalyst while the mononuclear catalyst requires the presence of oxygen in a much higher concentration (290 × 10–6 M). From the results of the study it can be inferred that the activation of complex catalysts is due to the interplay of chemical and structural changes. These findings may be helpful in the attempts to improve the catalytic activity of homogeneous catalysts, which are widely used in formic acid dehydrogenation, CO2 reduction and in other processes. In addition, this paper indicates that iridium complexes are excellent catalysts for the direct synthesis of H2O2 from the H2 and O2.  相似文献   

11.
A changeable ligand, which involves in activation of a catalyst or assists a reaction, draws an increasing attention, in contrast to a classical ligand as spectator. Proton‐responsive catalysts, which are capable of undergoing changes of properties on gaining/losing one or more protons, provides interesting features as follows: (i) catalyst activation by electronic effect, (ii) pH‐tuning of water‐solubility, and (iii) second‐coordination‐sphere interaction. On the basis of this catalyst design concept, we developed several highly efficient proton‐responsive catalysts for CO2 hydrogenation as H2 storage, formic acid (FA) dehydrogenation as H2 production, and transfer hydrogenation. The transformable ligands of proton‐responsive catalysts in promoting effective catalysis have aroused our interest. In this account, we summarize our efforts for the development and application of proton‐responsive catalysts. Specifically, the important role of pH‐dependent proton‐responsive complexes will be discussed.  相似文献   

12.
The hydroconversion of cyclohexene (CHE) using monometallic catalysts containing 0.35wt% of Pt, Pd, Ir or Re on a γ‐alumina support, as well as bimetallic catalysts containing combinations of 0.35wt% Pt with 0.35wt% of either Pd, Ir or Re on γ‐alumina, were investigated in a plug flow‐type fixed‐bed reactor. The Cyclohexene (CHE) feed was injected continuously with a rate of 8.33 × 10?3mole h?1 on 0.2 g of catalyst using a simultaneous hydrogen gas flow of 20 cm3 min?1 throughout a broad reaction temperature range of 50–400 °C. The dispersion of the metals in the catalysts was determined via H2 or CO chemisorption. The activities of the monometallic catalysts were found to be in the order: Pd > Pt > Ir > Re, whereas those of the bimetallic catalysts were in the order: PtPd > PtIr > PtRe. Cyclohexene hydrogenation and dehydrogenation reactions using the current mono‐ and bimetallic catalysts were kinetically investigated applying the absolute reaction rate theory, whereby reaction rate constant, activation energy, enthalpy and entropy of activation were computed to explain surface variations on these catalysts.  相似文献   

13.
The metal-free cis selective hydrogenation of alkynes catalyzed by a boroxypyridine is reported. A variety of internal alkynes are hydrogenated at 80 °C under 5 bar H2 with good yields and stereoselectivity. Furthermore, the catalyst described herein enables the first metal-free semihydrogenation of terminal alkynes. Mechanistic investigations, substantiated by DFT computations, reveal that the mode of action by which the boroxypyridine activates H2 is reminiscent of the reactivity of an intramolecular frustrated Lewis pair. However, it is the change in the coordination mode of the boroxypyridine upon H2 activation that allows the dissociation of the formed pyridone borane complex and subsequent hydroboration of an alkyne. This change in the coordination mode upon bond activation is described by the term boron-ligand cooperation.  相似文献   

14.
In this paper we present theoretical study of the reverse water gas shift (RWGS) reaction catalyzed by ruthenium halogen carbonyl complexes. Three mechanisms, including hydrogen chloride, formic acid and oxidation–reduction mechanism, have been explored by density functional theory. The calculations indicate that the oxidation–reduction mechanism contributes to the TDI and TDTS in the ESM TOF calculations. Bimetallic catalysts would be likely to be more highly active than monometallic catalyst for the RWGS reaction. Among bimetallic catalysts studied, both bimetallic catalysts [Ru(μ-Cl)Cl(CO)3]2 and [Ru(μ-CO)Cl(CO)3]2 shows higher activity than [Ru(μ-Cl)(CO)4]2 catalyst with [Ru(μ-CO)Cl(CO)3]2 considering as the most efficient catalyst for RWGS reaction.  相似文献   

15.
Single‐atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single‐atom sites were stabilized on an ordered porous nitrogen‐doped carbon matrix (ISAS‐Co/OPNC). ISAS‐Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N‐heterocycles to release H2. ISAS‐Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N‐heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS‐Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious‐metal catalysts. The reaction mechanisms are systematically investigated using first‐principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.  相似文献   

16.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state-of-the-art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron-withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron-deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h−1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

17.
The selective decarbonylation of formic acid was achieved under transition‐metal‐free conditions. Using a liquid chemical‐looping strategy, the thermodynamically favored dehydrogenation of formic acid was shut down, yielding a pure stream of CO with no H2 or CO2 contamination. The transformation involves a two‐step sequence where methanol is used as a recyclable looping agent to yield methylformate, which is subsequently decomposed to carbon monoxide using alkoxides as catalysts.  相似文献   

18.
Direct electrochemical nitrogen reduction for ammonia production is necessary to reduce the use of fossil fuels from conventional Haber–Bosch methods. Applications of nitrogen reduction electrocatalysts remain inhibited by slow reaction kinetics and low faradaic efficiencies because of competitive H2 production pathways. Current strategies to address this challenge in selectivity have focused on catalyst design, reactor configuration, and electrolyte conditions. This brief review discusses the thermodynamic and kinetic challenges in the field as well as current underused approaches for selective catalyst development including bimetallic catalysts, transition metal nitrides, and carbon supports.  相似文献   

19.
A one-pot synthesis of bimetallic metal–organic frameworks (Co/Fe-MOFs) was achieved by treating stoichiometric amounts of Fe and Co salts with 2-aminoterephthalic acid (NH2-BDC). Monometallic Fe (catalyst A) and Co (catalyst F) were also prepared along with mixed-metal Fe/Co catalysts (B–E) by changing the Fe/Co ratio. For mixed-metal catalysts (B–E) SEM energy-dispersive X-ray (EDX) analysis confirmed the incorporation of both Fe and Co in the catalysts. However, a spindle-shaped morphology, typically known for the Fe-MIL-88B structure and confirmed by PXRD analysis, was only observed for catalysts A–D. To test the catalytic potential of mixed-metal MOFs, reduction of nitroarenes was selected as a benchmark reaction. Incorporation of Co enhanced the activity of the catalysts compared with the parent NH2-BDC-Fe catalyst. These MOFs were also tested as electrocatalysts for the oxygen evolution reaction (OER) and the best activity was exhibited by mixed-metal Fe/Co-MOF (Fe/Co batch ratio=1). The catalyst provided a current density of 10 mA cm−2 at 410 mV overpotential, which is comparable to the benchmark OER catalyst (i.e., RuO2). Moreover, it showed long-term stability in 1 m KOH. In a third catalytic test, dehydrogenation of sodium borohydride showed high activity (turnover frequency=87 min−1) and hydrogen generation rate (67 L min−1 g−1 catalyst). This is the first example of the synthesis of bimetallic MOFs as multifunctional catalysts particularly for catalytic reduction of nitroarenes and dehydrogenation reactions.  相似文献   

20.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state‐of‐the‐art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron‐withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron‐deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h?1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号