首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strong red fluorescent nanocomposite, consisting of graphite-like carbon nitride nanosheets (g-C3N4 NSs) and serum albumin-capped Au nanoclusters (AuNCs), was synthesized. Dopamine (DA) can quench the red fluorescence of the nanocomposite, based on the Forster resonance energy transfer (FRET) mechanism. In this quenching process, the energy is transferred from the fluorescent g-C3N4 NSs-AuNCs to the oxidized DA quinine molecules (DA is easily oxidated to form DA quinine in air). The red fluorescence emission at 420 nm decreases dramatically and the quenching ratio (F0F)/F0 is linearly related to the concentration of DA in the range of 0.05–8.0 μmol L−1 with a detection limit of 0.018 μmol L−1 (S/N = 3). Additionally, this sensor has a potential of application to assay the DA in the real samples, such as human serum and human urine.  相似文献   

2.
A polyaniline-modified screen-printed carbon electrode (PANI/SPCE) was prepared by electropolymerization for the construction of a novel disposable cell impedance sensor. The conductive polymer improved greatly the electron transfer of SPCE and was very effective for cell immobilization. The adhesion of cells increased the electron transfer resistance (Ret) of redox probe on the PANI/SPCE surface, producing an impedance sensor for K562 leukaemia cells with a semilogarithm linear range from 104 to 107 cells ml−1 and a limit of detection of 8.32 × 103 cells ml−1 at 10σ. The proliferation of cells on the conductive polymer increased the Ret, leading to a novel way to monitor the growth process of cells on the PANI/SPCE. The electrochemical monitoring indicated K562 leukaemia cells cultured in vitro on the PANI surface were viable for 60 h, consistent with the analysis from microscopic imaging and MTT assay. This method for monitoring the surface proliferation and detecting the number of viable cells was simple, low-cost and disposable, thus providing a convenient avenue for electrochemical study of cell immobilization, adhesion, proliferation and apoptosis.  相似文献   

3.
We report the design and construction of enzyme-free sensor using platinum–nickel (PtNi) bimetallic alloy nanoparticle-conjugated nitrogen-doped graphene quantum dots (N-GQDs) for the highly specific in situ monitoring of dopamine (DA) secreted by glioma cells (C6). PtNi@N-GQDs nanocomposites were synthesized using a simple ultrasonication method. The resulting hybrid material was an excellent electrocatalyst for the redox activity of DA owing to the combined properties of PtNi alloys and highly conductive N-GQDs. The PtNi@N-GQDs-based sensing platform demonstrated substantial sensing ability with a detection range of 0.0125–952 μM, a sensitivity of 0.279 μA/μM/cm2, and a limit of detection of 0.005 μM (S/N = 3). The sensing performance of PtNi@N-GQDs was highly stable, selective, and reproducible. We successfully showed the practical application of the PtNi@N-GQDs sensor by quantifying DA in the blood serum and human urine samples. Finally, we used the PtNi@N-GQDs biocompatible platform to quantify DA released from C6 cells.  相似文献   

4.
A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L−1 (RHQ = 0.9999) for HQ and 0.1–1150 μmol L−1 (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L−1, respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results.  相似文献   

5.
The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd2+ and Pb2+ using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd2+ in a range of 0.05–60 μg L−1, with the detection limit (S/N = 3) of 0.02 μg L−1, and for Pb2+ in a range of 0.1–60 μg L−1, with the detection limit (S/N = 3) of 0.05 μg L−1. The new electrode was successfully applied to real water samples for simultaneous detection of Cd2+ and Pb2+ with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions.  相似文献   

6.
A simple, sensitive, and reliable method based on a combination of multi-walled carbon nanotubes with incorporated β-cyclodextrin (β-CD-MWNTs) and a polyaniline (PANI) film-modified glassy-carbon (GC) electrode has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The PANI film had good anti-interference properties and long-term stability, because of the permselective and protective properties of the conducting redox polymer film. The acid-treated MWNTs with carboxylic acid functional groups promoted the electron-transfer reaction of DA and inhibited the voltammetric response of AA. Sensitive detection of DA was further improved by the preconcentration effect of formation of a supramolecular complex between β-CD and DA. The analytical response of the β-CD-MWNTs/PANI film to the electrochemical behavior of DA was, therefore, better than that of a MWNTs/PANI film, a PANI film, or a bare glassy-carbon (GC) electrode. Under the conditions chosen a linear calibration plot was obtained in the range 1.0 × 10−7–1.0 × 10−3 mol L−1 and the detection limit was 1.2 × 10−8 mol L−1. Interference from AA was effectively eliminated and the sensitivity, selectivity, stability, and reproducibility of the electrodes was excellent for determination of DA.  相似文献   

7.
The electrochemical detection of artemisinin generally requires high oxidation potential or the use of complex electrode modification. We find that artemisinin can react with p-aminophenylboronic acid to produce easily electrochemically detectable aminophenol for the first time. By making use of the new reaction, we report an alternative method to detect artemisinin through the determination of p-aminophenol. The calibration curve for the determination of artemisinin is linear in the range of 2 μmol L−1 to 200 μmol L−1 with the detection limit of 0.8 μmol L−1, which is more sensitive than other reported electrochemical methods. The relative standard deviation is 4.83% for the determination of 10 μM artemisinin. Because the oxidation potential of p-aminophenol is around 0 V, the present method is high selective. When 40 μM, 90 μM and 140 μM of artemisinin were spiked to compound naphthoquine phosphate tablet samples, the recoveries are 107.6%, 105.4% and 101.7%, respectively. This detection strategy is attractive for the detection of artemisinin and its derivatives. The finding that artemisinin can react with aromatic boronic acid has the potential to be exploited for the development of other sensors, such as fluorescence artemisinin sensors.  相似文献   

8.
Au/polyaniline (PANI)–poly(4-styrenesulfonate) (PSS) hybrid nanoarray is fabricated for biomolecular sensing in neutral aqueous solutions. Firstly, an array of one-dimensional Au nanorods (diameter = ca. 200 nm, length = ca. 3 μm) is formed by a template-electrodeposition method using a porous anodic alumina membrane, and then a thin PANI–PSS composite layer is electropolymerized on the surface of the Au nanorods. The resulting Au/PANI–PSS hybrid nanoarray exhibits a quasi-reversible redox electrochemical process at ca. +0.11 V and electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) is attained with a detection limit of 0.3 μM in a neutral solution.  相似文献   

9.
Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1–15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM−1 with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis.  相似文献   

10.
In this study, hierarchical polyaniline (PANI) nanosheets were electrochemically deposited on indium tin oxide nanoparticles coated fluorine-doped tin oxide glass (ITONPs-FTO) substrate from an aqueous solution containing 0.5 M aniline and 1 M H2SO4. The ITONPs provide efficient support with high electroactive surface area in the electrochemical deposition of PANI and produce excellent PANI films. The developed PANI film deposited on the ITONPs-FTO electrode was characterized via field-emission scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. A hybrid supercapacitor (HSC) was fabricated using the developed PANI deposited ITONPs-FTO as a positrode and the jute sticks derived activated carbon nanosheets coated FTO (JAC-FTO) as a negatrode. Because of its high capacitive performance, unique structures of electrode materials, and optimum operating potential window, the fabricated PANI-ITONPs-FTO//JAC-FTO HSC performed excellently in 0.1 M HCl aqueous electrolyte, delivering a high areal capacitance of 318 mF/cm2 at a 1.0 mA/cm2 current density and exhibit a high energy density of 28 µWh/cm2 at a high power density of 400 µW/cm2. Moreover, the HSC exhibits excellent cyclic stability with ~ 87% Coulombic efficiency and ~ 91% capacitance retention after 1000 charge–discharge cycles.  相似文献   

11.
In this study, a molecularly imprinted electrochemical sensor (MIP/DA) was investigated for selective and sensitive determination of dopamine (DA) by electrochemical polymerization of p-aminothiophenol in the presence of DA on gold electrode. According to electrochemical behaviour of the sensor, gained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), MIP/DA sensor showed distinctive electron transfer characteristics in comparison to the non-imprinted (NIP/DA) sensor. Besides the MIP/DA sensor showed high selectivity for dopamine through its analyte specific cavities. The sensor had a broad working range of 5.0×10−8–2.0×10−7 M with a limit of detection (LOD) of 1.8×10−8 M and the developed sensor was successfully applied for determination of dopamine in pharmaceutical samples.  相似文献   

12.
A single-walled carbon nanotube (SWNT) is covalently attached to the interior surface of a conical glass micropore electrode (GME) to create a novel amperometric dopamine sensor (SWNT/NH-GME). The SWNT/NH-GME combines the advantages of excellent transport properties of the cone-shaped micropore with the characteristics of a SWNT, exhibiting a dramatic electrocatalytic effect on the oxidation of dopamine (DA). Cyclic voltammetry and amperometric methods were employed to study the electrochemical behavior of the SWNT/NH-GME. The results showed that the SWNT/NH-GME sensor exhibited an excellent immunity from ascorbic acid interference and was able to measure DA concentrations with a detection limit of 4.2 × 10?7 mol/L (S/N = 3).  相似文献   

13.
Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs–PANI) via the direct electroreduction of the adsorbed AuCl 4 - ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs–PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0.8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability.
Gold nanoparticles decorated polyaniline (GNPs-PANI) was prepared via electrosynthesis. The GNPs-PANI composite showed good catalytic activity toward the oxidation of dopamine.  相似文献   

14.
Gong J  Miao X  Zhou T  Zhang L 《Talanta》2011,85(3):1344-1349
A sensitive enzymeless organophosphate pesticides (OPs) sensor is fabricated by using Au nanoparticles (AuNPs) decorated graphene nanosheets (GNs) modified glassy carbon electrode as solid phase extraction (SPE). Such a nanostructured composite film, combining the advantages of AuNPs with two dimensional GNs, dramatically facilitates the enrichment of nitroaromatic OPs onto the surface and realizes their stripping voltammetric detection of OPs by using methyl parathion (MP) as a model. The stripping voltammetric performances of captured MP were evaluated by cyclic voltammetric and square-wave voltammetric analysis. The combination of the nanoassembly of AuNPs-GNs, SPE, and stripping voltammetry provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. The stripping analysis is highly linear over the MP concentration ranges of 0.001-0.1and 0.2-1.0 μg mL−1 with a detection limit of 0.6 ng mL−1. This designed enzymeless sensor exhibits good reproducibility and acceptable stability.  相似文献   

15.
Herein, we reported the detection of dopamine (DA) based on use of a cathodically pretreated polyaniline (PANI) modified electrode. The PANI electrode presents a remarkable change in their electrocatalytic properties after a simple cathodic pretreatment, which consisted in applying a potential of ?0.7 V for 3 s. While the as‐prepared PANI shows no electrochemical response for DA, the cathodically pretreated PANI presented reversible electrochemical responses with well‐defined anodic and cathodic peaks. The electrochemical behavior of DA at the PANI electrode was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized experimental conditions, the anodic peak currents increased proportionally to the DA concentration, displaying a linear relationship in the concentration range of 0.11 to 1.75×10?4 M with a detection limit of 13.7 μM (3 σ/slope). Recovery studies in pharmaceutical formulations presented values between 98 % and 104 %. The cathodically pretreated PANI electrode was successfully applied for DA detection in real samples of pharmaceutical formulation showing good agreement with spectrometric comparative method. The unexpected easily capability of modulate the electrocatalytic properties of the electropolymerized PANI film using a simple pretreatement was successfully demonstrated. The cathodically pretreatment PANI electrode showed electrochemical responses for DA with excellent selectivity, sensitivity, and high stability.  相似文献   

16.
《中国化学快报》2020,31(10):2839-2842
Electrochemical detection is an efficient method for the detection of Bisphenol A (BPA). Herein, a sensitive photo-electrochemical sensor based on two-dimensional (2D) TiO2 (001) nanosheets was fabricated and then used for BPA electrochemical detection. Upon light irradiation, the 2D TiO2 (001) nanosheets electrode provided a lower detection limit of BPA detection compared with an ambient electrochemical determination. The low detection limit is ∼5.37 nmol/L (S/N = 3). Furthermore, profiting from the photoelectric characteristics, the 2D TiO2 (001) nanosheets electrode exhibits a nice regeneration property. After 45 min of light irradiation, the electrochemical signal was regenerated from 14.7% to 82.9% of the original signal at the 6th cycle. This is attributed to the non-selective OH mediation produced by the 2D TiO2 (001) nanosheets mineralizing anodic polymeric products and resuming surface reactive sites. This investigation indicates that photo-assistance is an efficient method to improve the electrochemical sensor for detecting BPA in water environments.  相似文献   

17.
A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6]3−/4− couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility.  相似文献   

18.
The design and synthesis of the high-efficiency electrochemical sensor is the key to electrochemical conversion technology. This work synthesized Ni-based metal-organic framework (Ni-MOF) nanosheets by a competitive double ligands hybridization strategy. They were used as precursors to construct Ni-MOF@Ni-2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) core@shell structures by introducing π - conjugated molecule, HHTP. EXAFS further confirmed the interaction between Ni atoms and hexahydroxytriphenylene molecules. This process helps to promote more exposure of its active sites and enhance its electrochemical performance to become a high-performance enzyme glucose sensor. After coating, glucose detection sensitivity increased from 139.82 to 2124.90 μA/(mM cm2). These findings lay the foundation for preparing two-dimension hybrid functional MOF materials.  相似文献   

19.
We present a novel electrochemical glucose sensor employing an interdigitated array (IDA) of 1:1 aspect ratio carbon nanoelectrodes for the electrochemical-enzymatic redox cycling of redox species (ferricyanide/ferrocyanide) between glucose oxidase (GOx) and the two comb-shaped nanoelectrodes of the IDA. The carbon nanoelectrodes were fabricated using a simple, cost-effective, reproducible microfabrication technology known as the carbon-microelectromechanical-systems (C-MEMS) process. One comb (comb 1) of the IDA was selectively modified with GOx via the electrochemical reduction of an aryl diazonium salt, while the other comb (comb 2) remained unmodified; this facilitates electrochemically more active surface of comb 2, resulting in sensitive glucose detection. Ferricyanide is reduced to ferrocyanide by the GOx in the presence of glucose, and ferrocyanide diffuses to both combs of the IDA where it is oxidized. The limited electrochemical current collection at the surface-modified comb 1 is counterbalanced by the efficient redox cycling between the enzyme sites at comb 1 and the bare carbon surface of comb 2. Reducing the electrode-to-electrode gap between the two combs (gap = 1.9 μm) increases the diffusion flux of redox species at comb 2 hence, enhanced the sensitivity and limit of detection of the glucose sensor by ∼2.3 and ∼295 times, respectively at comb 2 compared to comb 1. The developed IDA-based glucose sensor demonstrated good amperometric response to glucose, affording two linear ranges from 0.001 to 1 mM and from 1 to 10 mM, with limits of detection of 0.4 and 61 μM and sensitivities of 823.2 and 70.0 μA mM−1 cm−2, respectively.  相似文献   

20.
In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H2O2 by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H2O2, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM−1 and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号