首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an atomic-scale analysis of the indium distribution of self-assembled (In,Ga)As quantum rings (QRs), which are formed from InAs quantum dots by capping with a thin layer of GaAs and subsequent annealing. We find that the size and shape of QRs as observed by cross-sectional scanning tunneling microscopy (X-STM) deviate substantially from the ring-shaped islands as observed by atomic force microscopy on the surface of uncapped QR structures. We show unambiguously that X-STM images the remaining quantum dot material whereas the AFM images the erupted quantum dot material. The remaining dot material shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and is responsible for the observed electronic properties of QR structures. These quantum craters have an indium concentration of about 55% and a diameter of about 20 nm, which is consistent with the observed electronic radius of QR structures. Based on the structural information from the X-STM measurements, we calculate the magnetization as a function of the applied magnetic field. We conclude that, although the real QR shape differs strongly from an idealized circular-symmetric open ring structure, Aharonov–Bohm-type oscillations in the magnetization can be expected.  相似文献   

2.
We have studied quantum dots (QDs) fabricated by activated spinodal decomposition (ASD) of an InGa(Al)As alloy deposited on top of self-organized InAs nanoscale stressors on GaAs substrate. Such a growth sequence results in a strong red shift of the PL emission down to 1.3 μm at 300 K. This red shift is caused by the formation of In-rich areas in the vicinity of the InAs islands, which increase the effective dot size. Beyond a certain critical InAs composition or nominal thickness of the InGa(Al)As layer the PL line shifts back towards higher energies. Adding Al to the alloy increases the red shift for a given In concentration. Room temperature lasing near 1.3 μm with threshold current densities of about 85 A/cm2 was achieved for lasers based on three-fold stacked ASD-formed QDs, with a maximum cw output power of 2.7 W.  相似文献   

3.
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.  相似文献   

4.
Based on the effective-mass approximation, the hydrostatic pressure effects on exciton states in InAs/GaAs self-assembled quantum dots (QDs) are studied by means of a variational method. Numerical results show that the exciton binding energy has a minimum with increasing dot height for any hydrostatic pressure. The interband emission energy increases when the hydrostatic pressure increases. In particular, we find that hydrostatic pressure has a remarkable effect on exciton states for small QD size. Our results are in agreement with experiment measurements.  相似文献   

5.
We report direct observation of tunneling emission of electrons and holes from In(Ga)As/GaAs QDs in time resolved capacitance spectroscopy. From the dependence of the tunneling time constant on the external electric field the important entire localization energies of electron and holes in In(Ga)As QDs are determined with high accuracy. The results yield electron and hole localization energies of and , respectively, which is in excellent agreement with 8-band k·p theory.  相似文献   

6.
A single-electron transistor (SET) is used to detect tunneling of single electrons into individual InGaAs self-assembled quantum dots (QDs). By using an SET with a small island area and growing QDs with a low density we are able to distinguish and measure three QDs. The bias voltage at which resonant tunneling into the dots occurs can be shifted using a surface gate electrode. From the applied voltages at which we observe electrons tunneling, we are able to measure the electron addition energies of three QDs.  相似文献   

7.
We present data on the electrical transport properties of highly-doped silicon-on-insulator quantum dots under the effect of pulsed magnetic fields up to 48 T. At low field intensities, B < 7 T, we observe a strong modification of the conductance due to the destruction of weak localization whereas at higher fields, where the magnetic field length becomes comparable to the effective Bohr radius of phosphorous in silicon, a strong decrease in conductance is demonstrated. Data in the high and low electric field bias regimes are then compared to show that close to the Coulomb blockade edge magnetically-induced quenching to single donors in the quantum dot is achieved at about 40 T.  相似文献   

8.
By numerical diagonalization of honeycomb-lattice tight-binding Hamiltonian we calculate the density of state (DOS) of irregularly shaped graphene quantum dots fabricated in the form of graphene nano-flakes. The finite-size electron confinement and the edge states result in the central peak of DOS that is located at the zero-energy Dirac point. The amplitude and width of the peak are provided by the form of the graphene cluster, but no regular correlation with its shape was found.  相似文献   

9.
We report on the two spectral holes in the photocurrent of InAs self-assembled quantum dots (SAQDs) embedded in a pin diode irradiated by two different lasers. The estimated homogeneous broadening (Γh) of 25 μeV for InAs SAQDs implies the possibility of high-density multiple wavelength-domain optical memory with the ratio of inhomogeneous broadening to Γh larger than 3300. The dependence of writing power, electric field, and temperature on the Γh was also investigated using hole burning spectroscopy. The Γh broadened not only as the writing power increased over a few W/cm2 but also as the applied field increased. The Γh showed linear dependence on temperature, and the spectral hole was observed up to 80 K.  相似文献   

10.
In0.45Ga0.55As/GaAs multistacking quantum dot (QD) structures were fabricated on a GaAs (n 1 1)B (n=2–4) substrate by metalorganic vapor-phase epitaxy. QDs spontaneously aligned in the [0 1 1] direction were observed on stacked QDs, whereas QDs were randomly distributed in the initial In0.45Ga0.55As layer growth. The formation mechanism of this self-alignment was studied by changing the number of In0.45Ga0.55As/GaAs multilayers and crystallographic arrangement. Photoluminescence spectra showing clear polarization dependence indicate carrier coupling in the QD arrays. This growth technique results in spontaneously aligned InGaAs QDs without any preprocessing technique prior to growth.  相似文献   

11.
汤乃云  陈效双  陆卫 《物理学报》2005,54(12):5855-5860
采用有效质量近似方法研究了量子点的激发态光致发光峰的展宽问题. 对尺寸不均匀分布下量子点各能级发光峰与平均尺寸量子点发光峰的能量偏差进行了计算,定性地描述了尺寸分布对量子点基态和激发态发光峰展宽的影响. 研究表明,量子点的高度、直径以及体积等不均匀分布使量子点具有不同的垂直、平面方向的量子束缚. 这两种量子限制的相互作用决定了量子点激发态发光峰的宽度相对于基态发光峰的大小. 在各种不同性质的尺寸分布下,量子点激发态发光峰的展宽有可能大于、等于或小于基态发光峰的展宽. 关键词: 量子点 尺寸分布 激发态  相似文献   

12.
Lasers operating at 1.3 μm have attracted considerable attention owing to their potential to provide efficient light sources for next-generation high-speed communication systems. InAs/GaAs quantum dots (QDs) were pointed out as a reliable low-cost way to attain this goal. However, due to the lattice mismatch, the accumulation of strain by stacking the QDs can cause dislocations that significantly degrade the performance of the lasers. In order to reduce this strain, a promising method is the use of InAs QDs embedded in InGaAs layers. The capping of the QD layer with InGaAs is able to tune the emission toward longer and controllable wave-lengths between 1.1 and 1.5 μm. In this work, using the effective-mass envelope-function theory, we investigated theoretically the optical properties of coupled InAs/GaAs strained QDs based structures emitting around 1.33 μm. The calculation was performed by the resolution of the 3D Schrödinger equation. The energy levels of confined carriers and the optical transition energy have been investigated. The oscillator strengths of this transition have been studied with and without taking into account the strain effect in the calculations. The information derived from the present study shows that the InGaAs capping layer may have profound consequences as regards the performance of an InAs/GaAs QD based laser. Based on the present results, we hope that the present work make a contribution to experimental studies of InAs/GaAs QD based structures, namely the optoelectronic applications concerning infrared and mid-infrared spectral regions as well as the solar cells.  相似文献   

13.
We present two methods for the creation of two-particle entangled states of excitons in a coupled quantum dot system. The system contains two identical quantum dots that are coupled by an inter-dot hopping process. The manipulation of the system is succeeded by proper application of an external laser field.  相似文献   

14.
Photocurrent (PC) spectroscopy is employed to study the carrier escape from self-assembled InAs/GaAs quantum dots (QDs) embedded in a Schottky photodiode structure. As a function of the applied field, we detect a shift of the exciton ground-state transition due to the quantum-confined Stark effect (). The tunneling time, which is directly related to the observed photocurrent linewidth due to τ/(2Γ), changes by a factor of five in the photocurrent regime. The measured linewidth dependency on the electric field is modeled by a simple 1D WKB approximation for the tunneling process, which shows that the energetic position of the wetting layer is important for the measured tunneling time out of the dot. In addition to that we present cross-sectional atomic force measurements (AFM) of the investigated photodiode structure. The method needs a minimum of time and sample preparation (cleaving and etching) to obtain the dot density, dot distribution, and give an estimate of the dot dimensions. Etching only the cleaved surface of the sample opens up the opportunity to determine the properties of a buried dot layer before or even after device fabrication.  相似文献   

15.
We theoretically study an enhancement of the Kondo effect in quantum dots with two orbitals and spin . The Kondo temperature and conductance are evaluated as functions of energy difference Δ between the orbitals, using the numerical renormalization group method. The Kondo temperature is maximal around the degeneracy point (Δ=0) and decreases with increasing |Δ| following a power law, TK(Δ)=TK(0)(TK(0)/|Δ|)γ, which is consistent with the scaling analysis. The conductance at T=0 is almost constant 2e2/h. Both the orbitals contribute to the conductance around Δ=0, whereas the current through the upper orbital is negligibly small when |Δ|TK(0). These are characteristics of SU(4) Kondo effect.  相似文献   

16.
InAs quantum dots in GaAs, grown under the presence of Sb by metalorganic chemical vapor deposition, were studied with cross-sectional scanning tunneling microscopy. Large flat quantum dots with a truncated pyramidal shape, base lengths between 15 and 30 nm, heights of 1–3 nm, and a rather pure InAs stoichiometry were found for the case of an Sb supply during the InAs deposition. If Sb is already supplied during GaAs stabilization prior to InAs deposition, the dots become even larger and tend to get intermixed with Ga, but remain coherently strained with a reversed cone-like In distribution. Regarding the quantum dot growth Sb acts as surfactant, whereas an incorporation of individual Sb atoms was observed in the wetting layer.  相似文献   

17.
A pronounced modulation is observed in the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots (QDs), recorded at low excitation densities. The clearly distinguishable peaks are identified as a multimodal distribution of the ground state transition energy, originating from a discrete, stepwise variation of the structural properties of the QDs, which is associated with an increase of the QD height in monolayer (ML) steps. The observation of a ML splitting implies a flat QD shape with well-defined upper and lower interfaces as well as negligible indium segregation. The electronic properties of the InAs/GaAs QDs were investigated by PL and PL-excitation spectroscopy and are discussed based on realistic calculations for flat InAs/GaAs QDs with a truncated pyramidal shape based on an extended 8-band k·p model. The calculations predict a red shift of the ground state transition with each additional ML, which saturates for heights above 9 ML, is in good agreement with experiment.  相似文献   

18.
The photoluminescence (PL), its temperature dependence and X ray diffraction (XRD) have been studied in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with embedded InAs quantum dots (QDs), obtained with the variation of QD growth temperatures (470–535 °C). The increase of QD growth temperatures is accompanied by the enlargement of QD lateral sizes (from 12 up to 28 nm) and by the shift non monotonously of PL peak positions. The fitting procedure has been applied for the analysis of the temperature dependence of PL peaks. The obtained fitting parameters testify that in studied QD structures the process of In/Ga interdiffusion between QDs and capping/buffer layers takes place partially. However this process cannot explain the difference in PL peak positions.  相似文献   

19.
The quantum states of interacting electrons in a quantum dot in a magnetic field are calculated and the effects of corrections to the 2D parabolic model are examined. The quantum states are obtained by a new method which involves three steps: first the electrostatic potential of the device is obtained from a solution of the Poisson equation, next this potential is used together with a combination of variational and Hartree–Fock calculations to obtain an orthogonal basis whose low-lying states are localised in the region of the dot and finally this basis is used to perform an exact diagonalization. Special attention is paid to the effect of motion perpendicular to the ideal 2D plane and the effect of screening of the Coulomb interaction by metallic electrodes close to the dot. Both effects result in a weakened effective interaction and increase the magnetic fields at which ground-state transitions occur.  相似文献   

20.
The generation of electron spin coherence has been studied in n-modulation-doped (In,Ga)As/GaAs self-assembled quantum dots (QDs) which contain on average a single electron per dot. The doping has been confirmed by pump–probe Faraday rotation experiments in a magnetic field parallel to the heterostructure growth direction. For studying spin coherence, the magnetic field was rotated by 90° to the Voigt geometry, and the precession of the electron spin about the field was monitored. The coherence is generated by resonant excitation of the QDs with circularly polarized laser pulses, creating a coherent superposition of an electron, and a trion state. The efficiency of the generation can be controlled by the pulse intensity, being most efficient for (2n+1)π pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号