首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

2.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

3.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

4.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

5.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

6.
Summary Pyridine-4-carboxaldehyde thionicotinoyl hydrazone (4-PTNH) forms 1:1 adducts with metal(II) halides and 1:2 complexes (metal to ligand) with metal(II) thiocyanates. Magnetic and spectral studies indicate polymeric octahedral geometry for M(4-PTNH)X2 (M=CoII or CuII, X=Cl; M=NiII, X=Cl, Br or I), five coordinate geometry for Co(4-PTNH)X2 (X=Br or I) and octahederal geometry for [M(4-PTNH)2(NCS)2] (M=CoII or NiII). I.r. spectral studies show that 4-PTNH acts as a neutral bidentate ligand in all the complexes, the bonding sites being the thione sulphur and azomethine nitrogen.  相似文献   

7.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

8.
CoII, NiII, CuII, ZnII and CdII complexes of N,N-bis(2-{[(2-methyl-2-phenyl-1,3-dioxolan-4-yl)methyl]amino}butyl)N′,N′-dihydroxyethanediimidamide (LH2) were synthesized and characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (TGA). The CoII, NiII and CuII complexes of LH2 were synthesized with 1?:?2 metal ligand stoichiometry. ZnII and CdII complexes with LH2 have a metal ligand ratio of 1?:?1. The reaction of LH2 with CoII, NiII, CuII, ZnII and CdII chloride give complexes Ni(LH)2, Cu(LH)2, Zn(LH2)(Cl)2, Cd(LH2)(Cl)2, respectively.  相似文献   

9.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

10.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

11.
Summary The reaction of warm alcoholic solutions of acetates of CoII, MnII, ZnII and NiII with 2, 6-diacetylpyridine andS-methylisothiosemicarbazide hydrogen iodide yielded the complexes: [Co(H2L)I2]·H2O, [Mn(H2L)(MeOH)2]I2, [Zn(H2L)(MeOH)I]I and [Ni(HL)]I, (H2L=the pentadentate pentaaza-ligand 2, 6-diacetylpyridine bis(S-methylisothiosemicarbazone)). The reaction of methanolic solutions of [Ni(HL)]I and NH4NCS or LiOAc.2H2O, give [Ni(HL)]NCS and NiL, respectively. For the complexes of CoII, MnII and ZnII, a pentagonal bipyramidal configuration is proposed, with H2L in the equatorial plane and two unidentate ligands (I and/or MeOH) in the axial positions. The complexes [Ni(HL)]X (X=I or NCS) and NiL probably have monomeric five- and dimeric six-coordinate structures, respectively, in which only the chelate ligand is involved in coordination.  相似文献   

12.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

13.
Synthesis and antibacterial activity of metal complexes of ciprofloxacin   总被引:3,自引:0,他引:3  
The interactions of ciprofloxacin (HCipro) with transition metals have been investigated. Two types of complexes, [M(Cipro)(OAc)(H2O)2] · 3H2O (M = MnII, CoII, CuII or CdII) and [M(Cipro)(OAc)] · 6H2O (M = NiII or ZnII), were obtained and characterized by physicochemical and spectroscopic methods. The i.r. spectra of the complexes suggest that the ciprofloxacin behaves as a monoanionic bidentate ligand. In vitro antibacterial activities of the HCipro and the complexes were tested.  相似文献   

14.
Summary 3-Isonicotinamido-rhodanine (HINRd) reacts with metal ions to yield complexes of the types M(INRd)OH·nH2O (where M=CoII, NiII, ZnII or CdII and n=1 or 2), Cu(HINRd)X·2H2O (where X=Cl or Br), Pd(HINRd)Cl2 and Cd(HINRd)X2·H2O (where X=Cl or Br), depending on the metal salt used and the reaction conditions. The metal complexes have been characterized by elemental analysis, molar conductivities, molecular weights, magnetic susceptibility, visible, and i.r. studies. The i.r. spectra show that HINRd binds in a bidentate or monodentate manner. The spectral and magnetic studies suggest a tetrahedral arrangement for CoII, octahedral for NiII and square-planar for PdII. HINRd behaves as a reducing agent towards CuII chloride or bromide forming diamagnetic CuI complexes.  相似文献   

15.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

16.
Three model metal complexes: Ni(NCS)L, Zn2(NCS)2L2 and Cd2(NCS)2L2, consisting of the SCN anion(s) and L = 2-[(2-dimethylaminoethylimino)-methyl]-phenolate, have been studied by X-ray diffraction and solid state NMR spectroscopy. The metal cations in these complexes have different coordination modes: Ni2+ is almost square-planar, the Zn2+ cation in Zn2(NCS)2L2 is pentacoordinated, whereas Cd2+ is penta- and hexacoordinated in [Cd2(NCS)2L2]. The different coordination of the metal cations influences the chemical shifts of the metal cations and also the nitrogen atoms. These chemical shifts can be correlated with the M-N and M-O bond lengths (M = Ni2+, Zn2+, Cd2+).  相似文献   

17.
Summary The stereochemistry and complexation behaviour of diphenyl diketone monothiosemicarbazone (DKTS) with CuII, CoII, NiII, CdII, ZnII, PdII, PtII, RuIII, RhIII and IrIII have been investigated by means of chemical, magnetic and spectral (i.r., Raman, 1H- and 13C-n.m.r. and electronic) studies. The ligand forms complexes of the M(DKTS)2 type with NiII, CuII and CoII having a distorted octahedral geometry. The absence of a v(M—X) band in the i.r. spectra, coupled with their 1:1 electrolytic conductances, suggests that RuIII, RhIII and IrIII form octahedral complexes of the [M(DKTS)2]Cl type. A four-coordinate structure involving bridging halides is proposed for the ZnII, CdII, PdII and PtII complexes, which have relatively low v(M—X) vibration modes.  相似文献   

18.
Summary The preparation of transition metal complexes containing the sterically hindered ligand, bis(3,5-dimethylpyrazolyl)methane (LL) is described. Compounds of formula M(LL)X2 (M = CoII, NiII or ZnII and X = Cl or Br) or M(LL)2X2 (M = MnII, FeII, CoII, NiII, CuII, ZnII or CdII and X = ClO 4 ; M = CoII, NiII, CuII or ZnII and X = NO 3 ; M = NiII or CuII and X = Cl or Br) have been isolated. In addition, an apparently trimeric Cu3(LL)4Cl6 · EtOH compound is reported. For Ni(LL)Cl2 a five-coordinated chloro-bridged dimer is found. The perchlorato compounds, M(LL)2(ClO4)2, appear to have one bidentate ClO 4 and one ionic ClO 4 group. The M(LL)2 species appears to occur either in octahedral geometry, leaving twocis-positions free, or in a tetrahedral geometry without space for other ligands, and probably also in a five-coordinate geometry with one free ligand position.Structural conclusions are drawn from i.r., far-i.r. and ligand-field spectra, x-ray powder patterns, magnetic susceptibility data, e.s.r. spectra and conductivity data.  相似文献   

19.
Summary 2-Aminoacetophenone-2-thenoylhydrazone, Haath, C4H3SC(O)NHN=C(Me)C6H4NH2-o, forms complexes with metal(II) salts of empirical compositions [VO(Haath)2SO4], [M(Haath)2Cl2] [M=CoII, NiII, CuII or ZnII] and [M(aath)2] [M=VIVO, CoII, NiII, CuII or ZnII] which have been characterized by elemental analyses, molar conductance, magnetic susceptibility, electronic, e.s.r., i.r. and n.m.r. (1H and13C) spectral studies. X-ray and electron diffraction patterns have been obtained in order to elucidate the structure of the CuII complexes. Photoacoustic spectra of powder NiII complexes have been recorded and interpreted in the light of u.v./vis. spectra.  相似文献   

20.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号