首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunlight-induced killing of nondividing human cells in culture   总被引:1,自引:0,他引:1  
Nondividing populations of human diploid fibroblasts that are DNA excision repair proficient (WS-1, KD. SSCW) and repair deficient (XP12BE) were exposed to mid-day summer sunlight for a determination of survival based on an ability of cells to remain attached to a culture vessel surface. Whereas mid- and far-UV wavelengths and radiation emitted from a sunlamp cause a gradual degeneraton and detachment of cells in a dose-dependent manner, sunlight does not promote cell killing that is evidenced by these criteria in repair proficient cells. Detachment of repair deficient cells is promoted to a limited extent but only at sunlight exposure times that are low with respect to the amount of DNA damage (pyrimidine dimers) induced. Repair proficient and deficient cells exposed to sunlight for longer times do not detach but are incapable of excuding a viable stain several days after exposure and appear as histologically fixed cells. Pyrimidine dimer levels in these sunlight irradiated cells were great enough to have promoted detachment had these levels been induced by UV (254 nm) alone. Other photodamage induced by these exposures evidently inhibits the dimer-induced cell degeneration that leads to cell detachment. We conclude that pyrimidine dimers are responsible for cell killing at short sunlight exposure times (< 40 min) but that at longer exposures (> 80 min) cells arc killed by a different mechanism that is independent of dimer-caused death.  相似文献   

2.
Two closely related strains of mouse lymphoma L5178Y cells, LY-R and LY-S, have been found to differ in their sensitivity to the cytotoxic effects of photodynamic treatment (PDT) with chloroaluminum phthalocyanine (CAPC) and red light. Strain LY-R is more sensitive to photodynamic cell killing than strain LY-S. Differences in uptake of CAPC could not account for the differences in cytotoxic effects. There was no marked difference between the two strains in the induction of single-strand breaks (which includes frank single-strand breaks and alkali-labile lesions), but substantially more DNA-protein cross-links were formed in strain LY-R by CAPC and light. Repair of single-strand breaks proceeded with similar kinetics in both strains for the first 30 min post-irradiation, suggesting that these lesions are not responsible for the differential sensitivity of the two strains to the lethal effects of photodynamic treatment. Thereafter, alkaline elution revealed the presence of increasing DNA strand breakage in strain LY-R. DNA degradation, as measured by the conversion of prelabeled [14C] DNA to acid-soluble radioactivity, was more rapid and extensive in strain LY-R.  相似文献   

3.
Fluorometric analysis of DNA unwinding (FADU assay) was originally designed to detect X-ray-induced DNA damage in repair-proficient and repair-deficient mammalian cell lines. The method was modified and applied to detect DNA strand breaks in Chinese hamster ovary (CHO) cells exposed to ionizing radiation as well as to UV light. Exposed cells were allowed to repair damaged DNA by incubation for up to 1 h after exposure under standard growth conditions in the presence and in the absence of the DNA synthesis inhibitor aphidicolin. Thereafter, cell lysates were mixed with 0.15 M sodium hydroxide, and DNA unwinding took place at pH 12.1 for 30 min at 20 degrees C. The amount of DNA remaining double-stranded after alkaline reaction was detected by binding to the Hoechst 33258 dye (bisbenzimide) and measuring the fluorescence. After exposure to X-rays DNA strand breaks were observed in all cell lines immediately after exposure with subsequent restitution of high molecular weight DNA during postexposure incubation. In contrast, after UV exposure delayed production of DNA strand break was observed only in cell lines proficient for nucleotide excision repair of DNA photoproducts. Here strand break production was enhanced when the polymerization step was inhibited by adding the repair inhibitor aphidicolin during repair incubation. These results demonstrate that the FADU approach is suitable to distinguish between different DNA lesions (strand breaks versus base alterations) preferentially induced by different environmental radiations (X-rays versus UV) and to distinguish between the different biochemical processes during damage repair (incision versus polymerization and ligation).  相似文献   

4.
Abstract— An aqueous effluent produced during the retorting of oil shale has been shown to induce a significant genotoxic response in cultured Chinese hamster (CHO) cells following activation by near ultraviolet light (UVA). In this report the light-activated responses induced by this complex mixture were compared between two DNA excision repair deficient mutants and their parental strain, CHO-AA8-4. The mutants, UV-5 and UV-135, were hypersensitive to both the cytotoxic and mutagenic effects of concurrent exposures to the retort process water and UVA. Repair proficiency appeared to render AA8-4 relatively insensitive to low doses of UVA treatment, whereas in the two mutants a linear dose-response in the induction of 6-thioguanine resistant (6TG®) mutations was observed even at the lower UVA doses examined. Filter DNA alkaline elution methods were utilized to demonstrate that both single-strand breaks and DNA-DNA interstrand crosslinks were induced in CHO DNA following process water and UVA treatment. Results were also obtained which indicated that the inability to repair DNA-DNA crosslinks contributed significantly to the hypersensitive response seen in the excision repair mutants following the photoactivation of this complex mixture.  相似文献   

5.
Abstract— Reductone (HOCH2COCHO), a keto-aldehyde produced by thermal degradation of some sugars, at alkaline pHs, blocks the excision repair of DNA lesions in uv-irradiated wild type Escherichia coli. This probably occurs as a result of inhibition of the exonucleolytic activity of DNA polymerase I. In addition, reductone alone induces DNA single-strand breaks. Repair of this damage is mainly dependent on the polA gene products.  相似文献   

6.
The effects of the photodynamic action of methylene blue (MB-PDA) on strains of Escherichia coli were investigated to determine whether the dye could be used in photodynamic therapy (PDT). Using the method of alkaline sucrose gradient sedimentation, it was shown that in darkness MB induces a type of prelesion in DNA that transforms into single-strand breaks in alkaline conditions, provided that the dye is present during the processing of the gradient. This prelesion is completely reversible if the cells are washed immediately to remove the dye. However, after illumination with white light, the prelesions become "fixed" stable lesions, irreversible even after successive washings. The lethal damage induced by MB-PDA in E. coli can be repaired by the excision-repair system (about 30%) and by the recA-dependent repair system (about 70%). Polymerase I enzyme participates actively in the repair of the damage. MB-PDA is a weak mutagen and the induction of mutations by this treatment is restricted to high survival rates. Moreover, MB-PDA does not induce the SOS system (an inducible repair system dependent of the recA and loxA genes products), as measured by Weigle reactivation. However, it seems that this treatment can impair the repair systems in E. coli.  相似文献   

7.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

8.
Abstract— When mammalian cells were exposed to visible-fluorescent light or near-UV light in the medium containing riboflavin and L-tryptophan, single-strand breaks appeared in their DNA. This did not occur if either riboflavin or tryptophan was omitted from the medium. The same effect was observed when cells were added to the pre-irradiated medium, indicating that a stable photoproduct was responsible. The induced DNA lesions were shown to be equally repairable in both excision proficient and defective (xeroderma pigmentosum) human cell lines. The active photoproduct formed was shown to be hydrogen peroxide. The possible relationship between these results and the near-UV induced killing of mammalian cells is discussed.  相似文献   

9.
The phthalocyanine dyes are attractive sensitizers for photodynamic therapy of cancer. The light fluence response curves for photocytotoxicity of zinc tetrahydroxyphthalocyanine were constructed using the colony-forming ability of Chinese hamster cells as an end-point. The survival curve of cells photosensitized to white light by this dye has a pronounced shoulder followed by an exponential decline. Postillumination hypertonic treatment (0.5 M NaCl for 20 min at 37 degrees C) enhanced log-phase killing, although to a lesser extent than after exposure to ionizing radiation. While such an enhancement usually indicates that the cells are able to repair potentially lethal damage, delayed trypsinization of photosensitized cells in plateau-phase failed to show a significant increase in cell survival. Thus, the repair of such a damage in plateau-phase is apparently absent. Experiments with split light fluence indicated that log-phase cells can repair sublethal damage during a 24 h interval, as evidenced by the reappearance of the shoulder on the split-dose survival curve.  相似文献   

10.
Squamous cell carcinomas (SCCs) are associated with ultraviolet radiation and multiple genetic changes, but the mechanisms leading to genetic instability are unclear. SCC cell lines were compared to normal keratinocytes for sensitivity to ultraviolet radiation, DNA repair kinetics and DNA repair protein expression. Relative to normal keratinocytes, four SCC cell lines were all variably sensitive to ultraviolet radiation and, except for the SCC25 cell line, were deficient in global repair of cyclobutane pyrimidine dimers, although not 6‐4 photoproducts. Impaired DNA repair of cyclobutane pyrimidine dimers was associated with reduced mRNA expression from XPC but not DDB2 genes which each encode key DNA damage recognition proteins. However, levels of XPC or DDB2 proteins or both were variably reduced in repair‐deficient SCC cell lines. p53 levels did not correlate with DNA repair activity or with XPC and DDB2 levels, but p63 levels were deficient in cell lines with reduced global repair. Repair‐proficient SCC25 cells depleted of p63 lost XPC expression, early global DNA repair activity and UV resistance. These results demonstrate that some SCC cell lines are deficient in global nucleotide excision repair and support a role for p63 as a regulator of nucleotide excision repair in SCCs.  相似文献   

11.
Abstract— The induction of mutations (reversion to tryptophan independence) by various UV (254, 313, 334 and 365 nm) and visible (405 and 434 nm) wavelengths was measured in exponential phase populations of Escherichia coli B/r thy trp and B/r thy trp uvrA by assay of irradiated populations on semi-enriched media. No mutations were induced in the repair proficient strain at wavelengths longer than 313 nm. Mutations were induced in the excisionless strain at wavelengths as long as 405 nm but less than expected from the known amount of DNA damage induced. Irradiation at the longer wavelengths (434, 405, 365 and 334 nm) suppressed the appearance of 254- or 313-nm-induced mutations in the repair competent strain but not in the excision deficient strain. The relative dose-requirement for mutation suppression was related to the relative efficiency of these wavelengths in inducing growth delay. These results suggest that the growth delay induced by near-UV and visible wavelengths allows more time for the 'error-free" excision repair process to act on the potentially mutagenic lesions induced by 254- and 313-nm radiations, thereby reducing the mutation frequency observed in the repair-proficient strain. The level of near-UV mutation induced in the excision deficient strain is lower than expected from the DNA damage known to be induced. It is possible that near-UV radiation induces a class of lethal lesions that are not susceptible to error-prone repair.  相似文献   

12.
Abstract— In stationary phase, strains of Escherichia coli deficient in excision (B/r Her) or recombination repair (K.12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365 nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair, in comparision to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Her in stationary phase reveal small peaks or shoulders in the 330–340, 400–410 and 490–510 nm wavelength ranges. The presence of 5μg/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E. coli B/r Her and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E. coli K.12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E. coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems.  相似文献   

13.
14.
Abstract We have used alkaline elution to study DNA damage produced by the photosensitizer hematoporphyrin derivative (HPD) in cultured Chinese hamster cells. Dosimetry was performed by measuring fluence and calculating photon absorption by intracellular HPD. HPD photosensitization causes DNA strand breakage. These breaks are repaired by the cell, although their fractional rate of repair is smaller than that for X-ray induced strand breaks at equivalent levels of strand breakage. The combined DNA polymerase inhibitors cytosine arabinoside and hydroxyurea suppress the repair of HPD-photosensitized breaks more strongly than they suppress repair of X-ray induced breaks. Addition of novobiocin to the aforementioned inhibitors causes almost total suppression of photosensitized break repair. A nucleotide excision repair system with inhibitor susceptibility similar to that of the system which removes pyrimidine dimers thus does not act upon HPD-photosensitized damage. The repair rate and inhibitor sensitivity findings together suggest biologically important differences in the chemical nature of X-ray induced and HPD-photosensitized strand breaks. In addition to strand breaks, HPD photosensitization produces covalent DNA-protein crosslinks, some of which persist through at least 90 min incubation, but which are repaired within 180 min.  相似文献   

15.
The interaction of chloroaluminum phthalocyanine-sensitized photodynamic treatment and gamma-irradiation was studied in confluent murine L929 fibroblasts. When the cells were given the combined treatments and immediately subcultured for determination of cell survival by colony formation, the data indicate independent actions of each modality. However, when subculture was delayed for 1 h, a substantial fraction of cells treated with a sub-lethal dose of PDT followed by 5 Gy gamma-radiation detached from the monolayer. Most of these detached cells were no longer clonogenic. The mode of photosensitized cell killing was found to be different from that of ionizing radiation-induced cell killing. Photosensitized cell killing was accompanied by morphological changes in the cells and extensive DNA degradation within one hour following the treatment. When chloroaluminum phthalocyanine pretreated cells were exposed to a sublethal fluence of light (6 kJ/m2) and a lethal dose of gamma-radiation (5 Gy), DNA degradation was enhanced, and about 20% of the cell population appeared to undergo the type of cell death typical of photodynamic treatment. Thus, although different initial lethal lesions are induced by photodynamic treatment and by ionizing radiation, interactions may occur during processing of the damage.  相似文献   

16.
POSTIRRADIATION PROPERTIES OF A UV-SENSITIVE VARIANT OF CHO   总被引:1,自引:0,他引:1  
Abstract A UV-hypersensitive mutant of Chinese hamster ovary (CHO) cells, termed 43-3B, has been used in a comparative study with the wild type CHO in order to determine the involvement of repair in several postirradiation phenomena. 43-3B has the same growth rate and chromosome number as the wild type CHO-9. It is hypersensitive to UV irradiation (D0 of 0.3 J/m2 as compared to 3.2 J/m2 for the wild type). 43-3B shows only about 17% of the UV-stimulated unscheduled DNA repair synthesis of CHO-9 as measured by autoradiography. When breaks in supercoiled chromatin are measured after UV by the nucleoid sedimentation method, the mutant appears to be capable of carrying out only limited incision. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line, suggesting that the removal of UV-induced replication blocks by excision repair is the most important factor in allowing recovery of UV-inhibited DNA synthesis. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild type CHO-9, but little recovery was seen in 43-3B. This indicates that excision repair capability can also be important in split-fluence recovery.  相似文献   

17.
Abstract The cytotoxic and mutagenic effects of chloroaluminum phthalocyanine (CAPC) plus red light have been measured in strains of L5178Y mouse lymphoma cells which differ in their DNA repair capacities. Strain LY-R, deficient in the excision repair of UV-induced dimers, was found to be relatively more sensitive to the cytotoxic effects of CAPC plus light, whereas strain LY-S, deficienl in the repair of DNA double-strand breaks, was more sensitive than strain LY-R to the mutagenic effects of the treatment. Mutation frequencies were measured in LY-S and LY-R sub-strains which were heterozygous or hemizygous at the thymidine kinase (tk) locus. The mutation frequency at the tk locus induced in the heterozygous strain LY-SI by CAPC plus light was lower than that induced by an equitoxic dose of ionizing radiation but similar to that induced by an equitoxic dose of UVC radiation: The mutation frequency at the F., dose of CAPC plus light was approximately 1100 per 106 surviving cells. The induced frequency in strain LY-S1 was much higher than in either tk+l-heterozygous or ik+10 hemizygous strains of LY-R. The rate and extent of incorporation of CAPC by the LY-R strains was somewhat greater than for strain LY-S1 at early times after CAPC addition, but by the time the cells were irradiated (18 h after CAPC addition) the difference was not great enough to account for the difference in cytotoxicity. It is possible that the cytotoxic and mutagenic lesions differ and that either the quantities of the respective lesions induced or the efficiencies of repair of the respective lesions differ inversely in the two strains. light have been measured in strains of L5178Y mouse lymphoma cells which differ in their DNA repair capacities. Strain LY-R, deficient in the excision repair of UV-induced dimers, was found to be relatively more sensitive to the cytotoxic effects of CAPC plus light, whereas strain LY-S, deficienl in the repair of DNA double-strand breaks, was more sensitive than strain LY-R to the mutagenic effects of the treatment. Mutation frequencies were measured in LY-S and LY-R sub-strains which were heterozygous or hemizygous at the thymidine kinase (tk) locus. The mutation frequency at the tk locus induced in the heterozygous strain LY-SI by CAPC plus light was lower than that induced by an equitoxic dose of ionizing radiation but similar to that induced by an equitoxic dose of UVC radiation: The mutation frequency at the F., dose of CAPC plus light was approximately 1100 per 106 surviving cells. The induced frequency in strain LY-S1 was much higher than in either tk+l-heterozygous or ik+10 hemizygous strains of LY-R. The rate and extent of incorporation of CAPC by the LY-R strains was somewhat greater than for strain LY-S1 at early times after CAPC addition, but by the time the cells were irradiated (18 h after CAPC addition) the difference was not great enough to account for the difference in cytotoxicity. It is possible that the cytotoxic and mutagenic lesions differ and that either the quantities of the respective lesions induced or the efficiencies of repair of the respective lesions differ inversely in the two strains.  相似文献   

18.
The total synthesis of tetra(4-carboranylphenyl)porphyrins 4 and 6 and their zinc(II) complexes 5 and 7 are described. These compounds were characterized by analytical and spectroscopic methods and, in the case of 5, by X-ray crystallography. The water-soluble nido-carboranylporphyrins 6 and 7 were found to have low dark toxicity towards V79 hamster lung fibroblast cells, using a clonogenic assay (50% colony survival, CS(50)>300 microM). Upon light activation nido-carboranylporphyrin 6 effectively induced DNA damage in vitro. Two different methods were used to assess the extent of DNA damage: the super-coiled to nicked DNA and the alkaline Comet assay using human leukemia K562 cells. Significant PDT-induced DNA damage was observed for porphyrin 6 using both assays, compared to light-only and porphyrin-only experiments. It is concluded that this type of nido-carboranylporphyrin is a promising sensitizer for both the boron neutron capture therapy and the photodynamic therapy of tumors.  相似文献   

19.
Abstract— Reductone, a keto-aldehyde that blocks repair of UV-induced DNA damage also produces DNA breaks. These breaks are observed either in irradiated or unirradiated wild type and uvrA strains of Escherichia coli. DNA breakage has also been observed after in vitro treatment of T4 phage DNA. The results suggest that the breaking ability of reductone is a result of a direct attack on DNA.  相似文献   

20.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号