首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李文俊  郑杰允  谷林  李泓 《电化学》2015,21(2):99-114
锂电池的电化学性能与电子及离子在体相与界面的输运、反应、储存行为有关. 从原子尺度到宏观尺度,对电池材料在平衡态与非平衡态过程的电子结构、晶体结构、微观形貌、化学组成、物理性质的演化研究对于理解锂离子电池中各类构效关系至关重要,这需要综合多种原位与非原位表征技术. 目前,基础研究处于前沿的发达国家在这些方面取得了卓有成效的进展. 本文简介了中国科学院物理研究所近年来通过国内外合作,采用原位X射线衍射(in-situ XRD)、原位X射线吸收谱(in-situ XAS)、准原位/原位扫描电镜(quasi/in-situ SEM)、球差校正扫描透射电镜(HAADF/ABF-STEM)、扫描力曲线(Force-Curve)、中子衍射(Neutron Diffraction)、热重-差示扫描量热-质谱联用(TG-DSC-MS)、表面增强拉曼(SERS)等技术研究锂离子电池电极材料结构演化方面的进展,并对未来锂离子电池研究中先进表征技术的发展进行了简要的探讨.  相似文献   

2.
New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three‐dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three‐dimensional information can be obtained even at the atomic scale.  相似文献   

3.
This article presents a comprehensive investigation of (La, Sr)FeO3 by correlated atomic resolution annular dark field imaging and electron energy loss spectroscopy. Here, the ability of these techniques to characterize point defect formation and phase transitions under reducing conditions in situ in the scanning transmission electron microscope is evaluated and the influence of oxygen vacancies on the structure-property relationships is discussed. In particular, the evolution of the Ruddlesden-Popper, Brownmillerite, and Aurivillius phases can be associated directly with the ionic and electronic conductivity of the bulk material under different thermodynamic conditions. These results lead naturally to an atomistic defect chemistry model to explain the high temperature ionic and electronic conductivity in this and other perovskite materials.  相似文献   

4.
Nanostructures and nanoparticles of palladium assembled on highly ordered pyrolytic graphite (HOPG) by the adsorption of palladium molecular precursors (MPs), in dichloromethane solutions, have been prepared. Self-assemblies of palladium nanostructures on HOPG were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. In this work, palladium rings had a wide variety of sizes in the nanometer range, and the ring/tube structures were preserved after a reductive process in which palladium metallic nanoparticles were formed. Noncircular structures were observed at HOPG defects and atomic step sites, as well. It is proposed that the observed ring formation of the palladium molecular precursors on HOPG substrates is related to the functional groups in the MPs, van der Waals interactions between particles and between particle-substrate, as well as the wetting properties of the solvent. In the present work, we illustrate several examples of the formation and characterization of palladium complex tubes and the resulting palladium rings, via the reduction process.  相似文献   

5.
Developing orthogonal surface chemistry techniques that perform at the nanoscale is key to achieving precise control over molecular patterning on surfaces. We report the formation and selective functionalization of alumina nanoparticle arrays generated from block copolymer templates. This new material provides an alternative to gold for orthogonal surface chemistry at the nanometer scale. Atomic force microscopy and X-ray photoelectron spectroscopy confirm these particles show excellent selectivity over silica for phosphonic and carboxylic acid adsorption. As this is the first reported synthesis of alumina nanoparticles from block copolymer templates, characterizations via Fourier transform infrared spectroscopy, Auger electron spectroscopy, and transmission electron microscopy are presented. Reproducible formation of alumina nanoparticles was dependent on a counterintuitive synthetic step wherein a small amount of water is added to an anhydrous toluene solution of block copolymer and aluminum chloride. The oxidation environment of the aluminum in these particles, as measured by Auger electron spectroscopy, is similar to that of native aluminum oxide and alumina grown by atomic layer deposition. This discovery expands the library of available surface chemistries for nanoscale molecular patterning.  相似文献   

6.
Synchrotron-based X-ray techniques have been widely applied to the fields of environmental science due to their element-specific and nondestructive properties and unique spectral and spatial resolution advantages. The techniques are capable of in situ investigating chemical speciation, microstructure and mapping of elements in question at the molecular or nanometer scale, and thus provide direct evidence for reaction mechanisms for various environmental processes. In this contribution, the applications of three types of the techniques commonly used in the fields of environmental research are reviewed, namely X-ray absorption spectroscopy (XAS), X-ray fluorescence (XRF) spectroscopy and scanning transmission X-ray microscopy (STXM). In particular, the recent advances of the techniques in China are elaborated, and a selection of the applied examples are provided in the field of environmental science. Finally, the perspectives of synchrotron-based X-ray techniques are discussed. With their great progress and wide application, the techniques have revolutionized our understanding of significant geo- and bio-chemical processes. It is anticipatable that synchrotron-based X-ray techniques will continue to play a significant role in the fields and significant advances will be obtained in decades ahead.  相似文献   

7.
The atomic metal core structures of the subnanometer clusters Au13[PPh3]4[S(CH2)11CH3]2Cl2 (1) and Au13[PPh3]4[S(CH2)11CH3]4 (2) were characterized using advanced methods of electron microscopy and X-ray absorption spectroscopy. The number of gold atoms in the cores of these two clusters was determined quantitatively using high-angle annular dark field scanning transmission electron microscopy. Multiple-scattering-path analyses of extended X-ray absorption fine structure (EXAFS) spectra suggest that the Au metal cores of each of these complexes adopt an icosahedral structure with a relaxation of the icosahedral strain. Data from microscopy and spectroscopy studies extended to larger thiolate-protected gold clusters showing a broader distribution in nanoparticle core sizes (183 +/- 116 Au atoms) reveal a bulklike fcc structure. These results further support a model for the monolayer-protected clusters (MPCs) in which the thiolate ligands bond preferentially at 3-fold atomic sites on the nanoparticle surface, establishing an average composition for the MPC of Au180[S(CH2)11CH3]40. Results from EXAFS measurements of a gold(I) dodecanethiolate polymer are presented that offer an alternative explanation for observations in previous reports that were interpreted as indicating Au MPC structures consisting of a Au core, Au2S shell, and thiolate monolayer.  相似文献   

8.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   

9.
In this study the effect of electron irradiation on properties of a nanosized area of polystyrene was investigated at various doses by an electron-microscope-electron-spectroscopy system. Therefore, changes in electronic and chemical properties by the exposure were monitored from local areas of the conventional polymer using electron energy loss spectroscopy. Also, their spatial extension was measured by a high angle annular dark field detector. From the study it was found that a nanoscale region of polystyrene can modify its electronic and chemical structures dramatically by the irradiation, and the degree of modifications can be tailored by the electron dose. These results may suggest a way of utilizing conventional polymers in nanotechnology.  相似文献   

10.
We analyzed the surface atomic structure of highly oriented pyrolytic graphite (HOPG) substrate exfoliated with adhesive tape, using high‐resolution transmission electron microscopy and scanning transmission electron microscopy‐electron energy‐loss spectroscopy (STEM‐EELS). The surface step height of the exfoliated HOPG substrate was determined using high‐angle annular dark‐field‐scanning transmission electron microscopy (HAADF‐STEM) images and the depth profiles of the EELS spectra of a cross‐sectioned thin foil specimen prepared via focused ion beam milling. The exfoliated surface of the HOPG substrate presented disordered and curved graphene layers. The STEM‐EELS measurements indicated that upon exfoliation, the surface of the HOPG substrate reacted with atmospheric water and oxygen molecules.  相似文献   

11.
 An understanding of the correlation between microstructures and properties of materials require the characterization of the material on many different length scales. Often the properties depend primarily on the atomistics of defects, such as dislocations and interfaces. The different techniques of transmission electron microscopy allow the characterization of the structure and of the chemical composition of materials with high spatial resolution to the atomic level: high resolution transmission electron microscopy allows the determination of the position of the columns of atoms (ions) with high accuracy. The accuracy which can be achieved in these measurements depends not only on the instrumentation but also on the quality of the transmitted specimen and on the scattering power of the atoms (ions) present in the analyzed column. The chemical composition can be revealed from investigations by analytical microscopy which includes energy dispersive X-ray spectroscopy, mainly quantitatively applied for heavy elements, and electron energy-loss spectroscopy. Furthermore, the energy-loss near-edge structure of EELS data results in information on the local band structure of unoccupied states of the excited atoms and, therefore, on bonding. A quantitative evaluation of convergent beam electron diffraction results in information on the electron charge density distribution of the bulk (defect-free) material. The different techniques are described and applied to different problems in materials science. It will be shown that nearly atomic resolution can be achieved in high resolution electron microscopy and in analytical electron microscopy. Recent developments in electron microscopy instrumentation will result in atomic resolution in the foreseeable future.  相似文献   

12.
本文采用电化学方法,制备了一种便于回收和分离的柔性锌镍/铝层状双羟基/碳纤维(ZnNi/Al-LDHs/CFs) 复合材料. 采用X 射线衍射、红外光谱、场发射扫描电镜、电感耦合等离子体原子发射光谱和电化学阻抗光谱技术表征了ZnNi/Al-LDHs/CFs 复合材料的结构、形貌和光电催化性能. 与单独使用Zn/Al-LDHs/CFs 作为光催化剂或Ni/Al-LDHs/CFs 作为电催化剂相比较,ZnNi/Al-LDHs/CFs 复合材料显示了良好的光-电双功能催化特性,既可被用作乙醇和甲醇氧化的电催化剂,也可光电协同催化 2,6-二氯苯酚降解.  相似文献   

13.
Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.  相似文献   

14.
A detailed characterization of platinum- and gold-diamondlike carbon (DLC) nanocomposite films deposited onto silicon substrates is presented. A modified pulsed laser deposition (PLD) technique was used to incorporate noble metal nanoclusters into hydrogen-free DLC films. Several analytical techniques, including transmission electron microscopy, atomic force microscopy, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation testing, were used to investigate these thin films in an effort to determine their physical and electrochemical properties. Rutherford backscattering spectroscopy indicated that the gold- and platinum-DLC films contain metal concentrations between three and 36 atomic percent. Cross-sectional transmission electron microscopy revealed that metal is present as arrays of noble metal islands embedded within the DLC matrix, while atomic force microscopy provided evidence of target splashing. In addition, due to the inclusion of metal, metal-DLC thin films exhibited greater conductivity than their metal-free counterparts. The electrochemical properties were studied using quasi-reversible redox couples and correlated to the metal concentration. Finally, the influence of the layer's composition on the electron-transfer kinetics and the achievable working potential window is discussed. The results discussed herein suggest that metal-DLC thin films grown by pulsed laser deposition present a promising alternative electrode material for electrochemistry.  相似文献   

15.
It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.  相似文献   

16.
Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State‐of‐the‐art atomic resolution or in situ scanning transmission electron microscopy and electron energy‐loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single‐atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room‐temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.  相似文献   

17.
非接触原子力显微技术(NC-AFM)近年来发展迅速. NC-AFM对单个分子的成像和谱学实现了原子分辨和单个化学键分辨. NC-AFM自身功能的拓展及其与不同探针技术的联用将为材料、物理、化学和生命科学有关的研究提供崭新的思路. 本文首先介绍NC-AFM和qPlus 传感器的基本原理, 然后讨论原子尺度的相互作用力和短程力的精确测量, 总结近年来NC-AFM在原子尺度的化学结构成像、化学识别、电子结构性质分析以及原子操纵技术中的研究进展, 并讨论了开尔文探针力显微技术(KPFM)在局域接触势差(LCPD)测量方面的应用. 最后展望了NC-AFM面临的挑战和发展机遇.  相似文献   

18.
Imaging the doping elements is critical for understanding the photocatalytic activity of doped TiO2 thin film. But it is still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark-field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A-TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.  相似文献   

19.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

20.
From the Stone Age on, developmental periods of mankind carry the names of materials. Materials determine the applicability of key technologies and these are in turn of major significance for the economic success and the social development in modern society. Today's high-tech materials are the consequence of an improved understanding of the structure and composition of matter and of the interplay of microstructure and minor and trace constituents. We can distinguish four basic dimensional structural categories of materials: (a) the atomic structure level; (b) the crystal, glassy or amorphous structural level; (c) the microstructural level; (d) the level of constructions. As an example, these structural levels are described in some detail for graphite, a material used extensively throughout Analytical Chemistry. Decisive differences at the microstructural level result in graphitic materials with very varying properties: polycrystalline electrographite, glassy carbon, and pyrolytic graphite. Examples for the use of these materials in ETAAS are discussed.Structural features together with topochemical and trace chemical characteristics are studied today by a wide variety of analytical instrumentation and methods of modern materials analysis which can be grouped into four categories of techniques: (a) photon probe techniques; (b) electron probe techniques; (c) ion probe techniques; (d) electrical field probes.The most important of those techniques are discussed shortly with respect to their main characteristics as lateral and depth resolution, detection sensitivity, additional bonding or structural information, depth profiling possibilities etc.The constructions are the ultimate level of a materials structure. Structures of microelectronic components reach dimensionally into the domain of microstructure whereas constructions in heavy industry are of meter-ton dimensions. Progress in the use of materials as carriers of information is visualized by a morphological comparison of the sound tracks of conventional records with the information imprinted in optical discs.It is important to conceive materials as dynamic systems with limited lifetime. Fatigue and recrystallization are prominent relevant phenomena which must be studied by microstructural and topochemical methods. Dispersion strengthened microalloys like TZM, HT-molybdenum and NS-tungsten are discussed as examples how materials can be improved with respect to their extended use under extreme conditions. Again, a thorough structural and topochemical characterization was the basis of a successful respective materials development although a multitude of relevant topochemical questions still remain to be solved.Lifetime investigations are an essential tool of materials development as well as quality control. Relevant investigations for various tube materials for ETAAS are discussed.General acronyms in the field of materials science CFC Carbon fibre composite - CMC Ceramic matrix composites - COST Cooperation in science and technology - COST 503 COST-action in the field of powder metallurgy - CVD Chemical vapour deposition - CVI Chemical vapour infiltration - EG Electrographite - GC Glassy carbon - HT-Mo High temperature molybdenum (Mo-microalloy doped with potassium silicate) - JESSI Joint European Submicron Silicon Initiative - MMC Metal matrix composites - MOS Metal oxide semiconductor - NS-W Non-sag tungsten (used for lamp filaments and evaporative metallization techniques) - PACVD Plasma assisted chemical vapour deposition - PG Pyrolytic graphite - PMC Polymeric matrix composites - PVD Physical vapour deposition - TPG Total pyrolytic graphite - TZM Molybdenum base alloy containing 0.5% Ti, 0.08% Zr und 0.025% C - UHP Ultra high purity - VLSI Very large scale integration Analytical technique names AA Activation analysis - AAS Atomic absorption spectrophotometry - AEM Analytical electron microscopy - AES Auger electron spectrometry or atomic emission spectrometry (only used in this work where it is clear that Auger electron spectrometry is not meant) - AFP Atom force probe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号