首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biomedical application of carbon/carbon (C/C) composites is limited by lacking bioactivity and releasing carbon debris. Hydroxyapatite (HA) coating has been used to improve the bioactivity of C/C composites, but it cannot reduce the release of carbon debris effectively because of poor wear resistance property. In this work, a wear‐resistant layer of diamond like carbon (DLC) is applied on C/C composites, followed by an ultrasound‐assisted electrochemical deposition to prepare HA coatings. The microstructure, morphology and chemical composition of the DLC layer and the HA coating are characterised by scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy (EDS), X‐ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Raman spectrum. The bonding strength between the HA coating and the DLC layer modified C/C composites is examined by a tensile test. The results show that the DLC layer has a spherical morphology and provides a uniform surface for the deposition of the HA coating. The HA coating shows flaky morphology with a compact structure. The tensile strength of the HA coating on the DLC layer modified C/C composites is 6.24 ± 0.40 MPa, which is significantly higher than that of HA coating on unmodified C/C composites(3.04 ± 0.20 MPa). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
为研究影响碳基吸附剂吸附超临界温度气体的主要因素,选择石墨化热解碳黑BP280和Ajax活性炭,分析超临界温度高压甲烷在其上的吸附平衡。应用容积法,在压力0~20.5 MPa、温度253 K~313 K测定甲烷的吸附平衡数据,并由等量吸附线标绘和亨利定律常数确定等量吸附热。引入通用吸附等温方程,再由方程的Langmuir标绘确定最大吸附容量,进而通过方程的线性化计算吸附平衡态中甲烷分子的作用能。结果表明,甲烷在两种吸附剂上的最大吸附容量均随温度而变化,并都小于液态甲烷的密度;甲烷在碳黑和活性炭上的等量吸附热分别为11.9 kJ/mol~12.5 kJ/mol和17.5 kJ/mol~22.5 kJ/mol,体现了两种吸附剂不同的表面能量分布;甲烷分子间作用能随吸附量的变化特点反映了超临界温度甲烷以类似于压缩气体状态聚集的特点和吸附剂结构上的差异。碳基吸附剂的比表面积和微孔容积是影响其储存甲烷容量的重要因素。  相似文献   

4.
We propose a novel method to uniformly graft high‐density carbon nanotubes (CNTs) onto carbon fiber (CF) by using coupling agents. Coupling agents can supply much more active groups, which is beneficial for grafting high‐density CNTs onto CF surface. After CNT grafting treatment, there are still substantial amounts of reactive groups, which can further react with various types of molecules to meet different requirements. To create chemical bonding between CF and high‐density polyethylene, CF‐CNT was further grafted get reinforcement. The interfacial adhesion of the resulting composites showed a dramatic improvement.  相似文献   

5.
Quantum chemical analysis (MP2/6‐31+G*) of the pyrrole anions addition to carbon disulfide and the substitution effects therein shows that pyrrole‐2 (5)‐carbodithioates are thermodynamically the most stable compounds, while 1‐isomer obtained from the unsubstituted pyrrole is likely a kinetic product. Steric hindrances destabilize N‐adducts when a methyl substituent appears in a 2(5) position and the 2,5‐dimethyl‐1‐pyrrolecarbodithioate anion turns out to be even less stable than the 2,5‐dimethyl‐3‐pyrrolecarbodithioate anion. By contrast, pyrrole‐1‐carboxylates are calculated to be the most stable adducts of CO2 with pyrrole anions. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

6.
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g~(-1) at a current density of 167.5 mA·g~(-1)The improved capacity retention was obtained during the cell cycling as well.  相似文献   

7.
以聚酰亚胺薄膜为原料,经炭化形成碳膜;进而在碳膜表面制备了类金刚石碳(DLC)薄膜,研究了制备条件对碳膜导电性能的影响.采用扫描电镜分析了薄膜的表面形貌和微观结构;采用X射线衍射仪分析了薄膜的晶体结构.结果表明,DLC薄膜的电阻率随着沉积时间的延长先减小后增加;当沉积时间达到3 h时,相应DLC薄膜的电阻率达到最小值5.66×10-5Ω.m.  相似文献   

8.
This article introduces a newly innovative idea for preparation of superconductive ternary polymeric composites of polyamide 6 (PA6), conductive carbon black (CCB), and multiwalled carbon nanotubes (MWCNTs) with different weight ratios by a melt‐mixing technique. The complementary effects of CCB and MWCNTs at different compositions on rheological, physical, morphological, thermal, and dynamic mechanical and electrical properties of the ternary composites have been examined systematically. We have used a novel formulation to produce high‐weight fraction ternary polymer composites that show extremely higher conductivity when compared with their corresponding binary polymer composites at the same carbon loading. For example, with an addition of 10 wt % MWCNTs into the CCB/PA6 composite preloaded with 10 wt % CCB, the electrical conductivity of these ternary composites was about 5 S/m, which was 10 times that of the CCB/PA6 binary composite (0.5 S/m) and 125 times that of the MWCNT/PA6 binary composite (0.04 S/m) at 20 wt % carbon loading. The incorporation of the MWCNTs effectively enhanced the thermal stability and crystallization of the PA6 matrix in the CCB/PA6 composites through heterogeneous nucleation. The MWCNTs appeared to significantly affect the mechanical and rheological properties of the PA6 in the CCB/PA6 composites, a way notably dependent on the MWCNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1203–1212, 2010  相似文献   

9.
生物质作为自然界唯一可再生的有机碳资源,其利用受到了越来越多的关注。特别是随着能源和环境危机的日益加重,将生物质中非可食用部分催化转化为燃料及具有高附加值的化学品被认为是高效、环保、原子经济的绿色过程。同时,多孔炭材料具有丰富的孔道结构、优异的水热稳定性和大比表面积,是生物质催化转化反应中最常用的载体材料之一。兼之炭材料表面极性、亲疏水性的可调变性,及对酸碱溶剂的反应惰性,也使其无论在学术研究还是在工业应用中都具有特殊的优势。另外,随着纳米炭材料科学的飞速发展,合成孔径、形貌、及表面官能团可控的介孔炭和具有多级孔道结构的多孔炭材料成为可能,将其应用到纤维素催化转化过程中,对深入理解孔道结构、表面官能团对纤维素转化的作用,揭示催化反应作用机制,指导炭基催化剂的设计合成,均具有重要意义。在本综述中,我们首先对纤维素转化中多孔炭的孔道结构和表面官能团性质的独特作用进行了阐述。由于商业活性炭的孔径一般在微孔尺度,但纤维素及可溶低聚糖的分子体积较大,因而其在活性炭中的传质受到了极大的限制。通过模板法获得的介孔炭材料,可实现孔径在2–10 nm的可控合成,大大提高了反应物的扩散速率,使之能与催化活性位有效接触。但孔道过于狭长,在反应过程中堵塞的可能性增高,进而导致催化剂失活;因此,在介孔孔道的基础上,建立互通的多级孔道结构对反应物、中间物、和产物的扩散,及催化活性的保持更为有利。另一方面,炭材料表面的含氧官能团不仅具有加强1,4-糖苷键吸附的作用,还可以作为酸性活性中心催化水解反应的进行;尤其是在传统的水相纤维素催化转化过程中,亲水表面对多孔炭催化剂与反应物的接触非常有利。本文以纤维素水解及纤维素水解加氢反应为例,展开讨论了多孔炭作为固体酸及双功能催化剂载体的应用。在水解反应中,纤维素首先在热水中降解为可溶低聚糖,之后再与活性炭表面官能团反应;其中多孔炭的比表面积、酸量、及酸强度均是促进水解发生的正向因素。在水解加氢反应中,炭载贵金属催化剂作为最常用的加氢催化剂,可获得以六元醇为主的纤维素转化产物。除了加氢作用之外,贵金属小颗粒被证实可以通过氢溢流作用提供水解所需的H+,同时,正价的贵金属也可促进反应过程中的氢转移。另一方面,由于钨物种可催化逆羟醛缩合反应的发生,因此在反应体系中引入钨物种时,水解加氢的主要产物由六元醇变为乙二醇。需要特别指出的是,在纤维素催化水解加氢的过程中,多孔炭材料作为载体同样具有非常重要的作用:一方面,三维介孔的孔道结构不仅有利于反应物、产物的扩散,也有利于加氢金属催化剂的分散,进而提高金属的催化加氢能力;另一方面,当炭材料的表面化学性质改变时,也会影响产物的选择性分布,例如当炭表面显碱性时,由于异构化作用,丙二醇成为主要产物。本文最后,我们列举了一些新型多孔炭材料,包括杂原子改性的多孔炭材料和金属氧化物-炭复合多孔材料的合成方法及其在纤维素催化转化乃至生物质转化中的潜在应用。  相似文献   

10.
Carbon dioxide adsorption on the microporous carbon adsorbent PAU-10 within the 177.8—423 K temperature and 0.1—5.13·106 Pa pressure intervals was studied. The isosteres of absolute adsorption are well approximated by straight lines, which do not change their slope on going to temperatures higher than the critical temperature of CO2. An increase in the differential molar isosteric heat of adsorption (q st) at 0 < a < 1 mmol g–1 is explained by the influence of the endothermic effect of adsorption expansion of the adsorbent. In the region of high pressures and nonideal gas phase, q st is temperature-dependent.  相似文献   

11.
Carbyne, an infinite carbon chain, has attracted much interest and induced significant controversy for many decades. Recently, the presence of linear carbon chains (LCCs), which were confined stably inside double-wall carbon nanotubes (DWCNTs) and multiwall carbon nanotubes (MWCNTs), has been reported. In this study, we present a novel method to produce LCCs in a film of carbon nanotubes (CNTs). Our transmission electron microscopy and Raman spectroscopy revealed the formation of a bulk amount of LCCs after electric discharge of CNT films, which were used as field emission cathodes. The LCCs were confined inside single-wall CNTs as well as DWCNTs. Furthermore, two or three LCCs in parallel with each other are encapsulated when the inner diameter of CNT is larger than approximately 1.1 nm.  相似文献   

12.
碳纳米管(Carbon Nanotubes,CNT)自1991年发现以来,因其结构所具有的高比表面,高电导率,稳定的化学性质与超常的机械强度已成为世界范围内的研究热点,并应用于催化、气体储藏和电极材料等领域。用CNT修饰的电极具有良好的电化学性能并且已经取得了很好的实验结果[1],因此研究碳  相似文献   

13.
The voltammetric behavior of tannic acid (TA) on a single-wall carbon nanotubes (SWNTs) modified glassy carbon electrode has been investigated by cyclic voltammetry. TA can generate a well-defined anodic peak on the modified electrode at around 0.42 V (vs. SCE) in 0.10 M phosphate buffer solutions (pH = 4.0). The electrochemical reaction involves 1e transfer, accompanied by one proton. The electrode process is controlled by adsorption. The parameters affecting the response of TA, such as solution pH, accumulation time and accumulation potential are optimized for the determination of TA. Under the optimum conditions, the peak current changes linearly with the TA concentration in the range of 5.0 × 10−8–1.0 × 10−6 M. The lowest detectable concentration of TA is 8.0 × 10−9 M after 180 s accumulation. This method has been successfully applied to the determination of TA in tea and beer samples. In addition, the influence of potential interferents is examined. In the presence of bovine serum albumin, the peak current of TA decreases linearly due to the formation of a super-molecular complex.  相似文献   

14.
Cycloaddition of aziridine with carbon dioxide was successfully catalyzed by alkali metal halide or tetraalkylammonium halide to give the corresponding 5-membered cyclic urethane, 1,3-oxazolidin-2-one, selectively. The reaction can be performed at ambient temperature under atmospheric pressure. Analoguous reaction of aziridine with carbon disulfide also successfully gave the corresponding 5-membered cyclic dithiourethane, 1,3-thioxazolidine-2-thione.  相似文献   

15.
SiC coatings were applied on carbon/carbon composites by chemical vapor deposition for potential application in hip arthroplasty. The surface morphology, roughness, and wettability of the coatings were evaluated by scanning electron microscopy, laser confocal scanning microscope, and video‐based contact angle measuring device, respectively. The bonding strength between the coatings and carbon/carbon composites was analyzed by scratch testing. The cell responses to coatings were studied by analyzing the cell morphology and cell proliferation. The results showed that SiC coatings showed spherical morphology with a roughness of Ra = 1.0 ± 0.2 µm and a contact angle of 64.7 ± 4.0°. The coatings had lower surface roughness and better surface hydrophilicity compared with those of the uncoated carbon/carbon composites. A strong shear strength averaging 120.0 MPa between the coating and carbon/carbon composites was achieved. The cell culture experiments showed that cell spreading was improved, and cell proliferation was increased with the SiC coatings. It was demonstrated that CVD‐SiC‐coated carbon/carbon composites were good candidates as artificial hip joint materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
以多壁碳纳米管(MWCNTs)修饰玻碳电极为工作电极,采用阳极溶出线性扫描法研究了铜离子的电化学测定方法。探讨了MWCNTs修饰层数、富集电位、富集时间、溶液pH、支持电解质对峰电流的影响。实验表明,铜离子浓度在1.0×10-8~1.0×10-5mol·L-1范围内与峰电流呈良好的线性关系,检测限为2.0×10-9mol·L-1,且该电极具有良好的稳定性和抗干扰能力。  相似文献   

17.
18.
19.
Carbon nanotubes (CNTs) have been identified as excellent nanoreinforcements for carbon fiber (CF)–reinforced polymers regarding a wide range of engineering applications. The outstanding properties of CNTs, such as their large surface area, high mechanical strength, and low manufacturing cost bring them to be distinguished nanoreinforcements for carbon fiber–reinforced polymers to form multifunctional and multiscale composites. Electrophoretic deposition of graphene oxide for CNTs onto the CF surface was conducted. The presence of graphene oxide–CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the polyimide (PI).  相似文献   

20.
Nanosized carbon black (CB) was introduced into polypropylene/carbon nanotubes (PP/CNTs) nanocomposites to investigate the effect of multi‐component nanofillers on the thermal stability and flammability properties of PP. The obtained ternary nanocomposites displayed dramatically improved thermal stability compared with neat PP and PP/CNTs nanocomposites. Moreover, the flame retardancy of resultant nanocomposites was greatly improved with a significant reduction in peak heat release rate and increase of limited oxygen index value, and it was strongly dependent on the content of CB. This enhanced effect was attributed mainly to the formation of good carbon protective layers by CB and CNTs during combustion. Rheological properties further confirmed that CB played an important role on promoting the formation of crosslink network on the base of PP/CNTs system, which were also responsible for the improved thermal stability and flame retardancy of PP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号