共查询到20条相似文献,搜索用时 111 毫秒
1.
2.
从速率方程出发,对F—P腔掺镱双包层光纤激光器的输出特性进行了理论分析与数值模拟;根据模拟结果进行了光纤激光器的实验研究,获得中心波长为1081nm、最大功率为2.4W的近单模连续光纤激光输出,光一光转换效率为34.3%,斜率效率为50.0%,实验结果与理论模拟结论一致. 相似文献
3.
高功率双包层光纤激光器 总被引:5,自引:0,他引:5
介绍了高功率双包层光纤激光器的结构和工作原理,综述这种新型光纤激光器的主要特点及其在国内外的最新进展状况,展望了双包层光纤激光器的应用前景。 相似文献
4.
双包层光纤光栅选频双包层光纤激光器 总被引:5,自引:2,他引:5
双包层光纤激光器中多采用法布里珀罗(F-P)线形腔结构,谐振腔为一只二向色镜和光纤端面菲涅耳反射镜(反射率约为4%)构成,这属于一种有缺陷的腔结构,其稳定性不好,产生激光的波长很难得到有效控制,后腔镜不能精确选择激光器的输出波长,激光器的输出谱线较宽。在某些对激光波长有明确要求的应用中,该结构会受到限制。采用布拉格光纤光栅作腔镜,利用其窄带滤波特性,可以得到窄线宽的激光输出,目前报道的作为腔镜的布拉格光纤光栅为在单包层光敏光纤上制作而成,然后分别将不同反射率的光纤光栅与双包层增益光纤熔接,这给腔镜与双包层光纤之间带来很大的耦合损耗,影响了激光器的功率输出。该文报道了用相位掩模法在双包层光纤芯上写入了布拉格光纤光栅,并把此光纤光栅做为后腔镜.对长度为10m、20m的D形掺Yb^3 双包层光纤激光器进行实验研究,在1058nm附近得到稳定的窄线宽激光输出,3dB带宽为0.329nm。激光器最大输出功率为570mW。最后对实验结果进行了理论分析。 相似文献
5.
6.
7.
本文采用双包层掺镱光纤作为增益介质,用单壁碳纳米管作为饱和吸收体,获得最高输出功率为336 mW的锁模脉冲激光.用飞秒激光诱导水击穿法直接在单模光纤上制备出D形区,通过在D形光纤上滴涂单壁碳纳米管溶液,成功制备出碳纳米管饱和吸收体,并对其饱和吸收特性进行测试,发现其调制深度为27%.利用该饱和吸收体作为锁模器件,制备出具有环形腔结构的锁模光纤激光器.当抽运功率为4W时,获得了脉宽为93.8 fs,中心波长为1083.8 nm,3 dB谱宽为8.6 nm,重复频率为5.59 MHz,平均功率为336 mW的飞秒脉冲激光输出. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
通过热传导方程和边界条件得到高功率双包层光纤激光器温度分布的简化解析解,利用ANSYS模拟验证了简化的合理性,并以双包层的掺镱光纤激光器为例,把外包层的临界温度设定为80 ℃,计算了光纤激光器在自然对流、风扇制冷和水制冷条件下最大输出功率。计算结果表明:自然对流的情况下,对流传热系数为10 W·m-2·K-1时,光纤激光器的最大输出功率为105 W;风扇制冷的情况下,对流传热系数为80 W·m-2·K-1时,光纤激光器的最大输出功率820 W;要达到kW以上功率输出,必须对光纤进行主动水冷。 相似文献
16.
从双包层光纤激光器的速率方程出发,得到了光纤中泵浦光与激光的功率分布、输出功率与泵浦功率的关系、腔镜反射率及光纤长度对输出功率的影响。研究结果表明:输出激光功率与光纤长度及后腔镜反射率有很强的依赖关系,存在一个输出功率最大的最佳光纤长度。后腔镜反射率越大,输出激光功率越小;当光纤长度较短时,在输出端放置反射镜使泵浦光高反射,可以提高输出功率和效率。通过对端面泵浦掺Yb3+双包层光纤激光器进行理论分析和实验研究,得到输出激光的中心波长为1088.3nm,斜率效率为33.7%,最大输出功率为1.75W。 相似文献
17.
在MCVD车床上利用“湿法”掺杂方法研制出纤芯高掺Ge的石英基掺Tm3+光纤预制棒,采用侧面研磨和抛光工艺制成横截面为正六边形的光纤预制棒.经拉丝,内层涂覆低折射率材料后制成包层抽运光纤.测试其吸收谱,并对光纤参数进行优化.通过在光纤两端紫外写入光纤Bragg光栅,制成线形光学谐振腔,在工作波长793nm的激光抽运下,获得工作波长1947.1031nm、功率2.05W的激光输出.由此证明这种光纤具有优异的光学特性.
关键词:
3+光纤')" href="#">石英基掺Tm3+光纤
光纤Bragg光栅
包层抽运
光纤激光器 相似文献
18.
用改进的化学气相沉积方法和溶液掺杂方法制备了掺Bi双包层石英基光纤. 测试了掺Bi光纤预制棒切片的吸收光谱和掺Bi光纤在特定波长下的吸收系数,在不同波长的激光激发下, 研究了掺Bi光纤的近红外荧光光谱. 掺Bi光纤在976 nm激光激发下,其荧光光谱范围在1000---1400 nm之间, 荧光峰的峰值位于1140 nm附近,半高宽约为130 nm;在793和808 nm激光激发下得到了 1000---1700 nm的超宽带近红外荧光,半高宽超过250 nm.通过对掺Bi光纤预制棒切片进行900 ℃ 保温1 h的热处理后,发现在808 nm激光 激发下预制棒切片的荧光强度增加了近4倍.研究结果表明,具有超宽带荧光特性的双包层掺Bi光纤 有望作为超短脉冲激光器和可调谐激光器的增益介质. 相似文献
19.
20.
从光纤热传导方程出发,研究了不同泵浦光吸收系数对光纤激光器沿光纤长度方向温度分布的影响。结果表明,低吸收系数光纤泵浦端温度相对较低,分布较为平缓,有效减缓光纤的热损伤。根据理论分析结果,实验中选择了吸收系数为1.45 dB/m的掺Yb3+双包层光子晶体光纤作为增益介质,在泵浦光功率为560 W时,获得了428.5 W的高功率单模连续输出,斜率效率为76.5%,光束质量因子M2<1.2。由于泵浦端光纤温度较高,实验中对光纤两端进行了主动冷却,并且在离光纤端面约25 cm处的光纤表面温度进行实时测量,结果发现随着泵浦光功率的增加,光纤表面温度均匀增长,最高温度为310 K,温度正常。 相似文献