共查询到5条相似文献,搜索用时 15 毫秒
1.
非线性双曲型守恒律的高精度MmB差分格式 总被引:1,自引:0,他引:1
构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。 相似文献
2.
High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics 下载免费PDF全文
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
In this study, an arbitrary Lagrangian–Eulerian (ALE) approach is incorporated with a mixed finite‐volume–element (FVE) method to establish a novel moving boundary method for simulating unsteady incompressible flow on non‐stationary meshes. The method collects the advantages of both finite‐volume and finite‐element (FE) methods as well as the ALE approach in a unified algorithm. In this regard, the convection terms are treated at the cell faces using a physical‐influence upwinding scheme, while the diffusion terms are treated using bilinear FE shape functions. On the other hand, the performance of ALE approach is improved by using the Laplace method to improve the hybrid grids, involving triangular and quadrilateral elements, either partially or entirely. The use of hybrid FE grids facilitates this achievement. To show the robustness of the unified algorithm, we examine both the first‐ and the second‐order temporal stencils. The accuracy and performance of the extended method are evaluated via simulating the unsteady flow fields around a fixed cylinder, a transversely oscillating cylinder, and in a channel with an indented wall. The numerical results presented demonstrate significant accuracy benefits for the new hybrid method on coarse meshes and where large time steps are taken. Of importance, the current method yields the second‐order temporal accuracy when the second‐order stencil is used to discretize the unsteady terms. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
The Multidimensional Optimal Order Detection (MOOD) method for two‐dimensional geometries has been introduced by the authors in two recent papers. We present here the extension to 3D mixed meshes composed of tetrahedra, hexahedra, pyramids, and prisms. In addition, we simplify the u2 detection process previously developed and show on a relevant set of numerical tests for both the convection equation and the Euler system that the optimal high order of accuracy is reached on smooth solutions, whereas spurious oscillations near singularities are prevented. At last, the intrinsic positivity‐preserving property of the MOOD method is confirmed in 3D, and we provide simple optimizations to reduce the computational cost such that the MOOD method is very competitive compared with existing high‐order Finite Volume methods.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
In this article, an ALE finite element method to simulate the partial melting of a workpiece of metal is presented. The model includes the heat transport in both the solid and liquid part, fluid flow in the liquid phase by the Navier–Stokes equations, tracking of the melt interface solid/liquid by the Stefan condition, treatment of the capillary boundary accounting for surface tension effects and a radiative boundary condition. We show that an accurate treatment of the moving boundaries is crucial to resolve their respective influences on the flow field and thus on the overall energy transport correctly. This is achieved by a mesh‐moving method, which explicitly tracks the phase boundary and makes it possible to use a sharp interface model without singularities in the boundary conditions at the triple junction. A numerical example describing the welding of a thin‐steel wire end by a laser, where all aforementioned effects have to be taken into account, proves the effectiveness of the approach.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献