首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational fluid mechanics techniques for examining free surface problems in two‐dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two‐dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three‐dimensional free surface problems with a boundary‐fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary‐fitted, pseudo‐solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross‐section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
An arbitrary Lagrangian Eulerian (ALE) method for non‐breaking free surface flow problems is presented. The characteristic‐based split (CBS) scheme has been employed to solve the ALE equations. A simple mesh smoothing procedure based on coordinate averaging (Laplacian smoothing) is employed in the calculations. The mesh velocity is calculated at each time step and incorporated as part of the scheme. Results presented show an excellent agreement with the available experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A finite element technique is presented for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions. The finite element discretization is effected by Crouzeix–Raviart elements, the discontinuous pressure approximation of which is central to this approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic ‘energy’ reformulation of the desired output, the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the inter‐sub‐domain continuity conditions on velocity. Appealing to the dual max–min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine‐mesh discretization. The Lagrange multipliers are generated by exploiting an associated coarse‐mesh approximation. In addition to the requisite coarse‐mesh calculations, the bound technique requires the solution of only local sub‐domain Stokes problems on the fine mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flow rate past and the lift force on a body immersed in a channel. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a moving mesh BGK scheme (MMBGK) for multi‐material flow computations is proposed. The basic idea of constructing the MMBGK is to couple the Lagrangian method, which tracks material interfaces and keeps the interfaces sharp, with a remapping‐free ALE‐type kinetic method within each single material region, where the kinetic method is based on the BGK (Bhatnagar–Gross–Krook) model. Within each single material region, a numerical flux formulation is developed on moving meshes from motion of microscope particles, and the mesh velocity is determined by requiring both mesh adaptation for accuracy and robustness, such that the grids are moving towards to the regions with high flow gradients in a way of diffusive mechanism (velocity) to adjust the distances between neighboring cells, thus increasing the numerical accuracy. To keep the sharpness of material interfaces, the Lagrangian velocity and flux are constructed at the interfaces only. Consequently, a BGK‐scheme‐based ALE‐type method (i.e., the MMBGK scheme) for multi‐material flows is constructed. Numerical examples in one and two dimensions are presented to illustrate the accuracy and robustness of the MMBGK scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A new vortex particle‐in‐cell method for the simulation of three‐dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We develop one‐way coupling methods between a Boussinesq‐type wave model based on the discontinuous Galerkin finite element method and a free‐surface flow model based on a mesh‐free particle method to strike a balance between accuracy and computational cost. In our proposed model, computation of the wave model in the global domain is conducted first, and the nonconstant velocity profiles in the vertical direction are reproduced by using its results. Computation of the free‐surface flow is performed in a local domain included within the global domain with interface boundaries that move along the reproduced velocity field in a Lagrangian fashion. To represent the moving interfaces, we used a polygon wall boundary model for mesh‐free particle methods. Verification and validation tests of our proposed model are performed, and results obtained by the model are compared with theoretical values and experimental results to show its accuracy and applicability.  相似文献   

14.
In this work, we extend the Particle Finite Element Method (PFEM) to multi‐fluid flow problems with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking interfaces. We develop a numerical scheme able to deal with large jumps in the physical properties, included surface tension, and able to accurately represent all types of discontinuities in the flow variables. The scheme is based on decoupling the velocity and pressure variables through a pressure segregation method that takes into account the interface conditions. The interface is defined to be aligned with the moving mesh, so that it remains sharp along time, and pressure degrees of freedom are duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity. Furthermore, the mesh is refined in the vicinity of the interface to improve the accuracy and the efficiency of the computations. We apply the resulting scheme to the benchmark problem of a two‐dimensional bubble rising in a liquid column presented in Hysing et al. (International Journal for Numerical Methods in Fluids 2009; 60 : 1259–1288), and propose two breakup and coalescence problems to assess the ability of a multi‐fluid code to model topology changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the development of algebraic multigrid (AMG) solution methods for the coupled vector–scalar fields of incompressible fluid flow. It addresses in particular the problems of unstable smoothing and of maintaining good vector–scalar coupling in the AMG coarse‐grid approximations. Two different approaches have been adopted. The first is a direct approach based on a second‐order discrete‐difference formulation in primitive variables. Here smoothing is stabilized using a minimum residual control harness and velocity–pressure coupling is maintained by employing a special interpolation during the construction of the inter‐grid transfer operators. The second is an indirect approach that avoids the coupling problem altogether by using a fourth‐order discrete‐difference formulation in a single scalar‐field variable, primitive variables being recovered in post‐processing steps. In both approaches the discrete‐difference equations are for the steady‐state limit (infinite time step) with a fully implicit treatment of advection based on central differencing using uniform and non‐uniform unstructured meshes. They are solved by Picard iteration, the AMG solvers being used repeatedly for each linear approximation. Both classical AMG (C‐AMG) and smoothed‐aggregation AMG (SA‐AMG) are used. In the direct approach, the SA‐AMG solver (with inter‐grid transfer operators based on mixed‐order interpolation) provides an almost mesh‐independent convergence. In the indirect approach for uniform meshes, the C‐AMG solver (based on a Jacobi‐relaxed interpolation) provides solutions with an optimum scaling of the convergence rates. For non‐uniform meshes this convergence becomes mesh dependent but the overall solution cost increases relatively slowly with increasing mesh bandwidth. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A simple, efficient, flexible and accurate interpolation method, CIVA, is introduced for use with mesh‐free methods for flow simulations. The method enables mesh‐free cubic interpolation with the local co‐ordinate system, such as volume and area co‐ordinates, by utilizing the concept of the CIP scheme and allows the development of new highly accurate mesh‐free methods. The mesh‐free methods integrate the gridless, particle and CIP methods since they have flexibility in the treatment of moving calculation points. For achieving high accuracy with the CIVA method, it is also important to correctly evaluate particle movement. The improvement of the evaluating algorithm is another objective of this study. The validity of the algorithms is confirmed by applying them to the convection and convection–diffusion problems. Since the CIVA‐based mesh‐free methods enable flexible, efficient and accurate fluid simulation, they make it possible to perform highly accurate simulations of many kinds of problems that involve complicated geometries and phenomena. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present an immersed boundary method for solving fluid flow problems in the presence of static and moving rigid objects. A FEM is used starting from a base mesh that does not represent exactly rigid objects (non?body?conforming mesh). At each time step, the base mesh is locally modified to provide a new mesh fitting the boundary of the rigid objects. The mesh is also locally improved using edge swapping to enhance the quality of the elements. The Navier–Stokes equations are then solved on this new mesh. The velocity of moving objects is imposed through standard Dirichlet boundary conditions. We consider a number of test problems and compare the numerical solutions with those obtained on classical body?fitted meshes whenever possible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper extends an adaptive moving mesh method to multi‐dimensional shallow water equations (SWE) with source terms. The algorithm is composed of two independent parts: the SWEs evolution and the mesh redistribution. The first part is a high‐resolution kinetic flux‐vector splitting (KFVS) method combined with the surface gradient method for initial data reconstruction, and the second part is based on an iteration procedure. In each iteration, meshes are first redistributed by a variational principle and then the underlying numerical solutions are updated by a conservative‐interpolation formula on the resulting new mesh. Several test problems in one‐ and two‐dimensions with a general geometry are computed using the proposed moving mesh algorithm. The computations demonstrate that the algorithm is efficient for solving problems with bore waves and their interactions. The solutions with higher resolution can be obtained by using a KFVS scheme for the SWEs with a much smaller number of grid points than the uniform mesh approach, although we do not treat technically the bed slope source terms in order to balance the source terms and flux gradients. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A new method is described for the iterative solution of two‐dimensional free‐surface problems, with arbitrary initial geometries, in which the interior of the domain is represented by an unstructured, triangular Eulerian mesh and the free surface is represented directly by the piecewise‐quadratic edges of the isoparametric quadratic‐velocity, linear‐pressure Taylor–Hood elements. At each time step, the motion of the free surface is computed explicitly using the current velocity field and, once the new free‐surface location has been found, the interior nodes of the mesh are repositioned using a continuous deformation model that preserves the original connectivity. In the event that the interior of the domain must be completely remeshed, a standard Delaunay triangulation algorithm is used, which leaves the initial boundary discretisation unchanged. The algorithm is validated via the benchmark viscous flow problem of the coalescence of two infinite cylinders of equal radius, in which the motion is due entirely to the action of capillary forces on the free surface. This problem has been selected for a variety of reasons: the initial and final (steady state) geometries differ considerably; in the passage from the former to the latter, large free‐surface curvatures—requiring accurate modelling—are encountered; an analytical solution is known for the location of the free surface; there exists a large body of literature on alternative numerical simulations. A novel feature of the present work is its geometric generality and robustness; it does not require a priori knowledge of either the evolving domain geometry or the solution contained therein. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The remap phase in arbitrary Lagrangian–Eulerian (ALE) hydrodynamics involves the transfer of field quantities defined on a post‐Lagrangian mesh to some new mesh, usually generated by a mesh optimization algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be monotonic, that is, not generate any new extrema in the field variables. It is well known that the only linear methods that are guaranteed to be monotonic for such problems are first‐order accurate; however, much work has been performed in developing non‐linear methods, which blend both high and low (first) order solutions to achieve monotonicity and preserve high‐order accuracy when the field is sufficiently smooth. In this paper, we present a set of methods for enforcing monotonicity targeting high‐order discontinuous Galerkin methods for advection equations in the context of high‐order curvilinear ALE hydrodynamics. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号