首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we investigate the dynamics of the near wake in a turbulent flow going past a circular cylinder with/without particles at a moderate Reynolds number using a direct numerical simulation method. High-order finite-deference schemes are applied to solve for the bulk fluid properties, and a Lagrangian approach is adopted to track the individual particles. The single-phase flow is analysed and validated using previous experimental data. Two converged states, U- and V-shaped, are observed in the near wake, which are consistent with the experimental results. For the two-phase flow, the addition of smaller particles shortens the length of the recirculation region and causes a V-shaped profile to form behind the circular cylinder. Furthermore, the particles increase the drag force from the circular cylinder and suppress the vortex shedding frequency. An increase in the turbulent statistics in the very near wake and a decrease in the turbulent statistics further downstream are also observed.  相似文献   

2.
The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number. The project supported by the State Key Fundamental Research Project of “Large Scale Scientific Computation Research” (G199903281)  相似文献   

3.
A direct numerical simulation of two-dimensional (2D) flow past an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method had been undertaken. The cylinder motion was modelled by a two degree-of-freedom mass–spring–damper system. The computing code was verified against a benchmark problem in which flow past a stationary circular cylinder is simulated. Then, analyses of vortex-induced vibration (VIV) responses, drag and lift forces and the phase and vortex structures were carried out. Results show that the cylinder's non-dimensional cross-flow response amplitude reaches its summit of 0.572 in the ‘lock-in’ regime. The ‘2S’, instead of the ‘2P’, vortex shedding mode is dominated in the ‘lower’ branch for this 2D low-Re VIV. A secondary oscillation is observed in the lift force when ‘lock-in’ occurs. It is shown that this secondary component changes the phase, offset the energy input by the primary component and thus reduces the cylinder responses. Effects of the Skop–Griffin parameter on cylinder responses were also investigated.  相似文献   

4.
A LES Large Eddy Simulation is performed to study the flow past two side-by-side circular cylinders at a Reynolds number of 5800, based on the free-stream velocity and the cylinders diameter. The centre-to-centre transverse pitch ratio T/D is varied from 1.5 to 3. Both cylinders are slightly heated and the small amount of heat can be treated as a passive scalar. The numerical simulations are in good agreement with experimental observations.  相似文献   

5.
The flow past two identical circular cylinders in side-by-side arrangements at right and oblique attack angles is numerically investigated by solving the three-dimensional Navier–Stokes equations using the Petrov–Galerkin finite element method. The study is focused on the effect of flow attack angle and gap ratio between the two cylinders on the vortex shedding flow and the hydrodynamic forces of the cylinders. For an oblique flow attack angle, the Reynolds number based on the velocity component perpendicular to the cylinder span is defined as the normal Reynolds number ReN and that based on the total velocity is defined as the total Reynolds number ReT. Simulations are conducted for two Reynolds numbers of ReN=500 and ReT=500, two flow attack angles of α=0° and 45° and four gap ratios of G/D=0.5, 1, 3 and 5. The biased gap flow for G/D=0.5 and 1 and the flip-flopping bistable gap flow for G/D=1 are observed for both α=0° and 45°. For a constant normal Reynolds number of ReN=500, the mean drag and lift coefficients at α=0° are very close to those at α=45°. The difference between the root mean square (RMS) lift coefficient at α=0° and that at α=45° is about 20% for large gap ratios of 3 and 5. From small gap ratios of 0.5 and 1, the RMS lift coefficients at α=0° and 45° are similar to each other. The present simulations show that the agreement in the force coefficients between the 0° and 45° flow attack angles for a constant normal Reynolds number is better than that for a constant total Reynolds number. This indicates that the normal Reynolds number should be used in the implementation of the independence principle (i.e., the independence of the force coefficients on the flow attack angle). The effect of Reynolds number on the bistable gap flow is investigated by simulating the flow for ReN=100–600, α=0° and 45° and G/D=1. Flow for G/D=1 is found to be two-dimensional at ReN=100 and weak three-dimensional at ReN=200. While well defined biased flow can be identified for ReN=300–600, the gap flow for ReN=100 and 200 changes its biased direction too frequently to allow stable biased flow to develop.  相似文献   

6.
Formation and evolution of secondary streamwise vortices in the compressible transitional boundary layers over a flat plate are studied using a direct numerical simulation method with high-order accuracy and highly effective non-reflecting characteristic boundary conditions. Generation and development processes of the secondary streamwise vortices in the complicated transitional boundary flow are clearly analyzed based on the of numerical results, and the effects on the formation of the ring-like vortex that is vital to the boundary layer transition are explored. A new mechanism forming the ring-like vortex through the mutual effect of the primary and secondary streamwise vortices is expressed.  相似文献   

7.
This work is the continuation of the discussion of ref. [1]. In ref. [1] we applied the theory of functions of a complex variable under Dirac-Pauli representation, introduced the Kaluza Ghost coordinate, and turned Navier-Stokes equations of viscofluid dynamics of homogeneous and incompressible fluid into nonlinear equation with only a pair of complex unknown functions. In this paper we again combine the complex independent variable except time, and cause it to decrease in a pair to the number of complex independent variables. Lastly, we turn Navier-Stokes equations into classical Burgers equation. The Cole-Hopf transformation join up with Burgers equation and the diffusion equation is Bäcklund transformation in fact and the diffusion equation has the general solution as everyone knows. Thus, we obtain the exact solution of Navier-Stokes equations by Bäcklund transformation.  相似文献   

8.
Numerical modeling of multiphase flow generally requires a special procedure at the solid wall in order to be consistent with Young's law for static contact angles. The standard approach in the lattice Boltzmann method, which consists of imposing fictive densities at the solid lattice sites, is shown to be deficient for this task. Indeed, fictive mass transfer along the boundary could happen and potentially spoil the numerical results. In particular, when the contact angle is less than 90 degrees, the deficiencies of the standard model are major. Various videos that demonstrate this behavior are provided (Supporting Information). A new approach is proposed and consists of directly imposing the contact angle at the boundaries in much the same way as Dirichlet boundary conditions are generally imposed. The proposed method is able to retrieve analytical solutions for static contact angles in the case of straight and curved boundaries even when variable density and viscosity ratios between the phases are considered. Although the proposed wetting boundary condition is shown to significantly improve the numerical results for one particular class of lattice Boltzmann model, it is believed that other lattice Boltzmann multiphase schemes could also benefit from the underlying ideas of the proposed method. The proposed algorithm is two‐dimensional, and the D2Q9 lattice is used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
圆柱绕流流场结构的大涡模拟研究   总被引:2,自引:0,他引:2  
郝鹏  李国栋  杨兰  陈刚 《应用力学学报》2012,29(4):437-443,487,488
为进一步揭示绕流现象的形成机理,本文分别对处于层流稳态区、尾流过渡区、剪切层转换区Re分别为26、200、1.4×105的三种典型流态下的单圆柱绕流进行了二维数值模拟研究。Re为26时应用层流模型直接求解N-S方程,而Re分别为200、1.4×105时使用大涡模拟的方法进行计算。数值模拟很好地再现了稳定的涡旋结构、周期性交替脱落的卡门涡街结构、不规则的涡旋结构,在此基础上分析了尾流结构的基本特征及其压强分布规律、平均的流场特性、积分参数(如升力系数、阻力系数、斯特劳哈尔等),并与有关研究成果进行了对比。研究发现,采用不同流动介质时流场特性有所差异,空气为介质时的计算结果更符合实验的成果,而水为介质时计算结果偏差较大,这主要是由尾流涡旋产生的不合理负压造成的。  相似文献   

10.
壁面展向周期振动的槽道湍流减阻机理的研究   总被引:9,自引:0,他引:9  
利用直接数值模拟研究了带有壁面展向周期振动的槽道湍流.壁面在展向的周期运动使湍流受到抑制,并使壁面摩擦阻力减小.通过对雷诺应力输运方程的分析研究了壁面展向周期振动的减阻机理,进一步揭示了压力变形项在湍流抑制中的关键作用.  相似文献   

11.
For direct numerical simulation (DNS) of turbulent boundary layers, gen- eration of an appropriate inflow condition needs to be considered. This paper proposes a method, with which the inflow condition for spatial-mode DNS of turbulent boundary layers on supersonic blunt cones with different Mach numbers, Reynolds numbers and wall temperature conditions can be generated. This is based only on a given instant flow field obtained by a temporal-mode DNS of a turbulent boundary layer on a flat plate. Effectiveness of the method is shown in three typical examples by comparing the results with those obtained by other methods.  相似文献   

12.
The late stages of transition to turbulence in a Mach two boundary layer are investigated by direct numerical simulation of the compressible Navier-Stokes equations. The primary instability at this Mach number consists of oblique waves, which are known to form a pattern of quasi-streamwise vortices. It is found that breakdown does not follow immediately from these vortices, which decay in intensity. The generation of new vortices is observed by following the evolution of the pressure and vorticity in the simulation, and analysed by consideration of vorticity stretching. It is found that the slight inclined and skewed nature of the quasi-streamwise vortices leads to a production of oppositely signed streamwise vorticity, which serves as a strong localised forcing of the shear layer alongside the original vortices, formed by convection and stretching of spanwise vorticity. The shear layer rolls up into many new vortices, and is followed by a sharp increase in the energy of higher frequencies and in the skin friction.  相似文献   

13.
The linear and early nonlinear stages of boundary-layer transition at free-stream Mach numberM ==2.0 are investigated by direct numerical simulation of the compressible Navier-Stokes equations. Results from simulations with a large computational box and small-amplitude random initial conditions are compared with linear stability theory. The growth rates of oblique waves are reproduced correctly. Two-dimensional waves show a growth that is modulated in time, indicating the presence of an extra unstable mode which moves supersonically relative to the free stream. Further simulations are conducted to investigate the nonlinear development of two- and three-dimensional disturbances The transition due to oblique disturbance waves is the most likely cause of transition at this Mach number, and is found to lead to the development of strong streamwise vortices.  相似文献   

14.
根据投影浸入边界法分步投影求解的特点,同时针对压力泊松方程离散后的大型稀疏线性方程组是非奇异非对称的特点,结合开源函数库UMFPACK,在传递线性方程组的系数矩阵和右端向量时,采用函数库Eigen将系数矩阵的数据结构改写优化,大大降低了存储空间,实现对高维大型稀疏线性方程组的快速求解,同时求解保持良好的稳定性。本文首先利用一具有解析解的数值算例验证了求解泊松方程数值方法的准确性和网格依赖性,进而利用VC++编写投影浸入边界法的数值计算程序,以单圆柱绕流为基准数值算例,通过与其他文献和实验结果的对比,验证了投影浸入边界法数值计算结果的可靠性,并进一步分析了不同雷诺数下圆柱绕流的流场结构特征和尾涡结构的动态演化过程。  相似文献   

15.
IntroductionRecently ,theproblemoftransitioninsupersonicboundarylayershasattractedmoreandmoreattentionduetoitstechnicalimportance .Uptonow ,mostanalyseswerelinearanalysis,anddetailedexperimentsareveryrare .Somepeoplehavetriedtoextendthenonlineartheoryofh…  相似文献   

16.
The present article describes the results from a study of nonlinear mechanisms at work during the process of transition to turbulence in pipe flows. Using an accurate hybrid finite-difference code for the simulation of unsteady incompressible pipe flow, we have performed a direct numerical simulation designed to model experiments performed by Han, Tumin and Wygnanski [12]. Based on these numerical data, we have conducted a meticulous investigation of the dynamic interactions of the structures and flow modes that can be observed during this process. Based on this study, we can paint a detailed picture of the dynamical interactions of flow structures during both the linear and nonlinear stages of pipe flow transition. While this picture does have some similarities to earlier proposed mechanisms, we find that even for the simple cases considered here the structure of the pertinent interactions is much richer than suggested by these earlier models.  相似文献   

17.
激波与转捩边界层干扰非定常特性数值分析   总被引:1,自引:0,他引:1  
激波与边界层干扰的非定常问题是高速飞行器气动设计中基础研究内容之一.以往研究主要针对层流和湍流干扰,在分离激波低频振荡及其内在机理方面存在着上游机制和下游机制两类截然不同的理论解释.分析激波与转捩边界层干扰下非定常运动现象有助于进一步加深理解边界层状态以及分离泡结构对低频振荡特性的影响规律,为揭示其产生机理指出新的方向.采用直接数值模拟方法对来流马赫数2.9,24?压缩拐角内激波与转捩边界层干扰下激波的非定常运动特性进行了数值分析.通过在拐角上游平板特定的流向位置添加吹吸扰动激发流动转捩,使得进入拐角的边界层处于转捩初期阶段.在验证了计算程序可靠性的基础上,详细分析了转捩干扰下激波运动的间歇性和振荡特征,着重研究了分离泡展向三维结构对激波振荡特性的影响规律,最后还初步探索了转捩干扰下激波低频振荡产生的物理机制.研究结果表明:分离激波的非定常运动仍存在强间歇性和低频振荡特征,其时间尺度约为上游无干扰区内脉动信号特征尺度的10倍量级;分离泡展向三维结构不会对分离激波的低频振荡特征产生实质影响.依据瞬态脉动流场的低通滤波结果,转捩干扰下激波低频振荡的诱因来源于拐角干扰区下游,与流场中分离泡的收缩/膨胀运动存在一定的关联.  相似文献   

18.
A numerical method developed for simulating three-dimensional incompressible boundary layer flow is presented. K-type transition up to the two-spike stage is simulated, and flow topologies at various stages of transition are determined. Comparison with flow topologies from other simulations of turbulent and transitioning flows is made. Financial support provided by Air Operations Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation, Australia.  相似文献   

19.
鄂学全  金俐  凌国灿 《力学学报》1991,23(3):265-273
本文介绍在水洞中做的作用于波浪形边界附近的水动力特性的实验研究。在基于圆柱模型直径的 R_c=10~4~1.9×10~4 范围内,测量了圆柱在波谷、波峰和不同距离上的阻力、升力脉动变化的频率。流谱显示实验揭示了尾流结构随距离-直径比 G/D 的变化情况及圆柱与边界相互作用的机制。  相似文献   

20.
应用平面二维悬沙数学模型对方柱尾流区的泥沙输运及床面调整进行了数值模拟,并对重要物理参数做了分析说明。数值计算采用时间分裂一全隐式有限差分格式,流场的计算基于沿水深平均的RANS方程。通过系统的数值模拟,揭示了不同来流情况下,方柱尾流区的流态变化,及与之相应的床面变化规律,并对不同流态下的泥沙运动作了分析。计算结果表明在方柱尾流区,不同的流场流态对尾流区的床面调整有明显影响。流场较弱的情况下,尾流区中湍动强度相应较弱,此时悬浮泥沙由于流速减小而普遍落淤,床面应力的减小也致使床面冲刷量减小。随着流场强度的逐渐增大,尾流区中湍动强度相应增强,床面应力增大,同时湍流的强烈交换作用增强了对泥沙的输运作用,床面变化不再是简单的淤积状态,部分区域出现了冲刷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号