首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variational multiscale method provides a methodical framework for large eddy simulation of turbulent flows. In this work, a particular implementation in the form of a three‐level finite element method separating large resolved, small resolved, and unresolved scales is proposed. Residual‐free bubbles are used for the numerical approximation of the small‐scale momentum equation. A stabilizing term is added, in order to take into account the effect of the small‐scale continuity equation. This implementation guarantees the stability of the method without further provisions and offers substantial computational savings on the small‐scale level. Furthermore, it is accounted for the unresolved scales by a specific dynamic modelling procedure. The method is tested for two different turbulent flow situations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In the following paper, we present a consistent Newton–Schur (NS) solution approach for variational multiscale formulations of the time‐dependent Navier–Stokes equations in three dimensions. The main contributions of this work are a systematic study of the variational multiscale method for three‐dimensional problems and an implementation of a consistent formulation suitable for large problems with high nonlinearity, unstructured meshes, and non‐symmetric matrices. In addition to the quadratic convergence characteristics of a Newton–Raphson‐based scheme, the NS approach increases computational efficiency and parallel scalability by implementing the tangent stiffness matrix in Schur complement form. As a result, more computations are performed at the element level. Using a variational multiscale framework, we construct a two‐level approach to stabilizing the incompressible Navier–Stokes equations based on a coarse and fine‐scale subproblem. We then derive the Schur complement form of the consistent tangent matrix. We demonstrate the performance of the method for a number of three‐dimensional problems for Reynolds number up to 1000 including steady and time‐dependent flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents residual‐based turbulence models for problems with moving boundaries and interfaces. The method is developed via a hierarchical application of variational multiscale ideas and the models are cast in an arbitrary Lagrangian–Eulerian (ALE) frame to accommodate the deformation of domain boundaries. An overlapping additive decomposition of velocity and pressure fields into coarse and fine scale components leads to coarse and fine scale mixed‐field problems. The problem governing fine scales is subjected to a further decomposition of the fine scale velocity into overlapping components termed as fine scales level I and level II. In turn, in the bottom‐up integration of scales, the model for level II fine scales serves to stabilize the problem governing level I fine scales, and model for level I fields yields the turbulence models. From the computational perspective, the coarse scales are represented in terms of the standard Lagrange shape functions, whereas level I and level II scales are represented via quadratic and fourth order polynomial bubbles, respectively. Because of the bubble functions approach employed in the consistently derived fine scale models, the resulting method is free of any embedded or tunable parameters. The proposed turbulence models share a common feature with the LES models in that the largest scales in the flow are numerically resolved, whereas the subgrid scales are modeled. The method is applied to flow around a plunging airfoil at Re = 40,000, and results are compared with experimental and numerical data published in the literature. Also presented are the results for the plunging airfoil at Re = 60,000 to show the robustness and range of applicability of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A numerical approximation for the one‐dimensional Burgers equation is proposed by means of the orthogonal subgrid scales–variational multiscale (OSGS‐VMS) method. We evaluate the role of the variational subscales in describing the Burgers “turbulence” phenomena. Particularly, we seek to clarify the interaction between the subscales and the resolved scales when the former are defined to be orthogonal to the finite‐dimensional space. Direct numerical simulation is used to evaluate the resulting OSGS‐VMS energy spectra. The comparison against a large eddy simulation model is presented for numerical discretizations in which the grid is not capable of solving the small scales. An accurate approximation to the phenomena of turbulence is obtained with the addition of the purely dissipative numerical terms given by the OSGS‐VMS method without any modification of the continuous problem.  相似文献   

6.
A high‐resolution method is developed to capture the material interfaces of compressible two‐fluid flows in multiple dimensions. A fluid mixture model system with single velocity and pressure is used, and viscous effect can also be taken into account. A consistent thermodynamic law based on the assumption of pressure equilibrium is employed to describe the thermodynamic behaviors of the pure fluids and mixture of two components. The splitting and unsplit Eulerian formulations of piecewise parabolic method are extended to numerically integrate the hyperbolic part of the model system, whereas the system of diffusion equations is solved using an explicit, central difference scheme. The block‐structured adaptive mesh refinement (AMR) capability is built in the hydrodynamic code to locally improve grid resolution. The resulting method is verified to be at least second‐order accurate in space. Numerical results show that the discontinuities, particularly contact discontinuities, can be resolved sharply. The use of AMR allows flow features at disparate scales to be resolved sufficiently. In addition, three‐dimensional shock–bubble interactions are simulated to investigate effects of Mach number on bubble evolution. The flow structures including those peculiar to three‐dimensional bubble are resolved correctly, and some physical phenomena with increasing Mach number are reported. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We investigate implicit large eddy simulation of the Taylor–Green vortex, Comte‐Bellot–Corrsin experiment, turbulent channel flow and transitional and turbulent flow over an SD7003 airfoil using the high‐order unstructured correction procedure via reconstruction (CPR) scheme, also known as the flux reconstruction scheme. We employ P1 (second‐order) to P5 (sixth‐order) spatial discretizations. Results show that the CPR scheme can accurately predict turbulent flows without the addition of a sub‐grid scale model. Numerical dissipation, concentrated at the smallest resolved scales, is found to filter high‐frequency content from the solution. In addition, the high‐order schemes are found to be more accurate than the low‐order schemes on a per degree of freedom basis for the canonical test cases we consider. These results motivate the further investigation and use of the CPR scheme for simulating turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A multimesh adaptive scheme for convection–diffusion–reaction problems for a large number of components is presented. The problem is solved by splitting transport and reaction processes. This way, the evaluation of the nonreactive part for each component and the reaction at each node constitute independent tasks. This allows to discretize each component of the solution on a distinct computational mesh, adapted on the basis of its error indicator. The standard single‐mesh strategy is used for comparison. Simulations of a point emission in a 3D domain are presented. Low remeshing periods of the adaptive scheme are found to be optimal, in terms of computational cost and accuracy, for the nonreactive problem. Examples with several reaction terms, with an increase of the complexity, are then presented. Results show that the accuracy of single‐mesh and multimesh strategies are similar. Instead, the computational cost of the multimesh strategy is lower than the single‐mesh in the majority of the examples; this process is controlled by the stiff behavior of the reactive term. The problem size of the multimesh scheme is much lower, and therefore, larger spatial discretizations can be simulated for a given available memory. The efficiency of the multimesh strategy increases with the number of species and the number of species that develop a plume. Finally, an example of a punctual emission considering realistic values of the initial concentrations and using the Community Multiscale Air Quality‐CBO5 reaction model, which involves 62 components, is presented; the small‐scale structure of the different nitrogen components near the emitter is captured. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Many problems of interest are characterized by 2 distinctive and disparate scales and a huge multiplicity of similar small‐scale elements. The corresponding scale‐dependent solvability manifests itself in the high gradient flow around each element needing a fine mesh locally and the similar flow patterns among all elements globally. In a block spectral approach making use of the scale‐dependent solvability, the global domain is decomposed into a large number of similar small blocks. The mesh‐pointwise block spectra will establish the block‐block variation, for which only a small set of blocks need to be solved with a fine mesh resolution. The solution can then be very efficiently obtained by coupling the local fine mesh solution and the global coarse mesh solution through a block spectral mapping. Previously, the block spectral method has only been developed for steady flows. The present work extends the methodology to unsteady flows of short temporal and spatial scales (eg, those due to self‐excited unsteady vortices and turbulence disturbances). A source term–based approach is adopted to facilitate a two‐way coupling in terms of time‐averaged flow solutions. The global coarse base mesh solution provides an appropriate environment and boundary condition to the local fine mesh blocks, while the local fine mesh solution provides the source terms (propagated through the block spectral mapping) to the global coarse mesh domain. The computational method will be presented with several numerical examples and sensitivity studies. The results consistently demonstrate the validity and potential of the proposed approach.  相似文献   

10.
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.  相似文献   

11.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
We present a finite element residual‐based variational multiscale formulation applied to the numerical simulation of particle‐laden flows. We employ a Eulerian–Eulerian framework to describe the flows in which the mathematical model results from the incompressible Navier–Stokes equation combined with an advection–diffusion transport equation. Special boundary conditions at the bottom are introduced to take into account sediments deposition. Computational experiments are organized in two examples. The first example deals with the well‐known gravity current benchmark, the lock‐exchange configuration. The second also employs for the current initiation the lock configuration, but the sediment particles are endowed with a deposition velocity and are allowed to leave the domain in the moment they reach the bottom. This is intended to mimic, partially, as the bed morphology is not allowed to change, the deposition process, in which sediment deposits are no longer carried by the flow. The spatial pattern of the deposition and its correlation with flow structures are the main focus of this analysis. Numerical experiments have shown that the present formulation captures most of the relevant turbulent flow features with reasonable accuracy, when compared with highly resolved numerical simulations and experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
We develop in this paper a discretization for the convection term in variable density unstationary Navier–Stokes equations, which applies to low‐order non‐conforming finite element approximations (the so‐called Crouzeix–Raviart or Rannacher–Turek elements). This discretization is built by a finite volume technique based on a dual mesh. It is shown to enjoy an L2 stability property, which may be seen as a discrete counterpart of the kinetic energy conservation identity. In addition, numerical experiments confirm the robustness and the accuracy of this approximation; in particular, in L2 norm, second‐order space convergence for the velocity and first‐order space convergence for the pressure are observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Three kinds of two‐level consistent splitting algorithms for the time‐dependent Navier–Stokes equations are discussed. The basic technique of two‐level type methods for solving the nonlinear problem is first to solve a nonlinear problem in a coarse‐level subspace, then to solve a linear equation in a fine‐level subspace. Hence, the two‐level methods can save a lot of work compared with the one‐level methods. The approaches to linearization are considered based on Stokes, Newton, and Oseen corrections. The stability and convergence demonstrate that the two‐level methods can acquire the optimal accuracy with the proper choice of the coarse and fine mesh scales. Numerical examples show that Stokes correction is the simplest, Newton correction has the best accuracy, while Oseen correction is preferable for the large Reynolds number problems and the long‐time simulations among the three methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this first part we propose and analyse a model for the study of two‐dimensional incompressible Navier–Stokes equations with a temperature‐dependent viscosity. The flow is supposed in a mixed convection regime and considers an outflow region, leading to a strongly coupled problem between the Navier–Stokes and energy equations, which will be justified theoretically. The coupling in the continuous problem is treated by an outer temperature fixed point strategy. Existence results for a particular variational formulation follows from this study. Further, a particular uniqueness result for small data is also obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The algebraic variational multiscale–multigrid method, an advanced computational approach recently proposed for large‐eddy simulation of turbulent flow, is further developed in this study for turbulent flow simulations in complex geometries. In particular, it is applied to the complex case of pulsatile turbulent flow dynamics of the upper and lower pulmonary airways up to generation 7 and carefully investigated for this important application. Among other things, the results obtained with the proposed method are compared with the results obtained with a rather traditional stabilized finite element method. As opposed to previous large‐eddy simulations of pulmonary airways, we consider a pulsatile inflow condition, allowing the development of turbulence over a pulse cycle to be investigated, which obviously makes these results more physiologically realistic. Our results suggest that turbulent effects in the bronchial airways are rather weak and can completely decay as early as the third generation, depending on geometry and flow distribution. Both methods utilized in this study are able to adequately capture all flow stages from laminar via transitional to turbulent regimes without any modifications. However, the algebraic variational multiscale–multigrid method provides superior results as soon as the flow enters the most challenging, turbulent flow regime. Furthermore, the robustness of the scale‐separation approach based on plain aggregation algebraic multigrid inherent to the algebraic variational multiscale–multigrid method is demonstrated for the present complex geometry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We present a new stabilized method for advection–diffusion equations, which combines a control volume FEM formulation of the governing equations with a novel multiscale approximation of the total flux. The latter incorporates information about the exact solution that cannot be represented on the mesh. To define this flux, we solve the governing equations along suitable mesh segments under the assumption that the flux varies linearly along these segments. This procedure yields second‐order accurate fluxes on the edges of the mesh. Then, we use curl‐conforming elements of the same order to lift these edge fluxes into the mesh elements. In so doing, we obtain a stabilized control volume FEM formulation that is second‐order accurate and does not require mesh‐dependent stabilization parameters. Numerical convergence studies on uniform and nonuniform grids along with several standard advection tests illustrate the computational properties of the new method. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号