首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D2 temperature-programmed desorption (TPD) was used to probe the structure of the Si(011)-(16 × 2) surface. Deuterium was adsorbed at 200°C to coverages θD ranging up to complete saturation (approximately 1.1 ML) and the sample heated at 5°C s−1. TPD spectra exhibited three second-order desorption peaks labelled β2, β*1 and β1 centered at 430, 520 and 550°C. Of the proposed models for the Si(011)-(16 × 2) reconstruction, the present TPD results as a function of θD provide support for the adatom/dimer model with the β2 peak assigned to D2 desorption from the dihydride phase, while the β*1 and β1 peaks arise from adatom and surface-atom monohydride phases.  相似文献   

2.
The adsorption and reaction of hydrogen sulfide, H2S, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the H2S was examined as a function of Ce oxidation state. H2S weakly chemisorbs on fully oxidized CeO2 desorbing near 155 K. Hydrogen from the H2S reacts with the surface O to desorb as water between 200 K and 450 K. When ca. 20% of the Ce4+ is reduced to Ce3+ more H2S dissociates to -OH and -SH and water is produced near 580 K. When the ceria is ca. 70% reduced, water formation is suppressed and H2 desorbs near 580 K. S 2p photoelectron spectroscopy indicates the decomposition of H2S into -SH and then -S as the sample is annealed from 100 K to 600 K. O 1s photoemission indicated the presence of H2O and -OH.  相似文献   

3.
The depth profiling of O 1s energy loss in silicon oxide near the SiO2/Si interface was performed using extremely small probing depth. As a result, the energy loss of O 1s photoelectrons with threshold energy of 3.5 eV was found. This value of 3.5 eV is much smaller than the SiO2 bandgap of 9.0 eV, but quite close to direct interband transition at Γ point in energy band structure of silicon. This can be explained by considering the penetration of electronic states from silicon substrate into silicon oxide up to 0.6 nm from the interface. In addition, the penetrating depth is larger than the thickness of the compositional transition layer.  相似文献   

4.
《Current Applied Physics》2014,14(5):653-658
This paper concerns the topic of surface passivation properties of rapid thermal oxidation on p-type monocrystalline silicon wafer for use in screen-printed silicon solar cells. It shows that inline thermal oxidation is a very promising alternative to the use of conventional batch type quartz tube furnaces for the surface passivation of industrial phosphorus-diffused emitters. Five minutes was the most favorable holding time for the rapid thermal oxidation growth of the solar cell sample, in which the average carrier lifetime was increased 19.4 μs. The Fourier transform infrared spectrum of the rapid thermal oxidation sample, whose structure was Al/Al-BSF/p-type Si/n-type SiP/SiO2/SiNx/Ag solar cell with an active area of 15.6 cm2, contained an absorption peak at 1085 cm−1, which was associated with the Si–O bonds in silicon oxide. The lowest average reflectance of this sample is 0.87%. Furthermore, for this sample, its average of internal quantum efficiency and conversion efficiency are respectively increased by 8% and 0.23%, compared with the sample without rapid thermal oxidation processing.  相似文献   

5.
F. Hirose  H. Sakamoto 《Surface science》1999,430(1-3):L540-L545
Thermal desorption of phosphorus on Si(100) surfaces has been investigated by varying the phosphorus coverage from zero to one monolayer (ML). The reaction path of phosphorus desorption is complicated and strongly dependent upon the phosphorus coverage. In the thermal desorption spectra, there are three apparent desorption peaks at 750, 850 and 1000°C. The entire phosphorus atoms on the surface desorb as P2 through recombinative reactions irrespective of the desorption temperature and the coverage. In the lower coverages below 0.2 ML, the thermal desorption spectra are characterized by a single peak at 900°C which is considered to be the desorption from Si---P heterodimers. At higher coverages exceeding 0.2 ML, it is considered that three desorption schemes from P---P, Si---P dimers and defects coexist in the reaction stage.  相似文献   

6.
A dependence of structural properties of TiO2 films grown on both Si- and Ti-substrates by atomic layer deposition (ALD) at the temperature range of 250-300 °C from titanium ethoxide and water on the number of reaction cycles N was investigated using Fourier-transform infrared (FTIR) spectroscopy and X-Ray diffraction (XRD). TiO2 films grown on both Si- and Ti-substrates revealed amorphous structure at low values of N < 400. However, an increase of N up to values 400-3600 resulted in the growth of polycrystalline TiO2 with structure of anatase on both types of substrates and according to XRD-measurements the sizes of crystallites rose with the increase of N. The maximum anatase crystallite size for TiO2 grown on Ti-substrate was found to be on ∼35% lower in comparing with that for TiO2 grown on Si-substrate. A use of titanium methoxide as a Ti precursor with the ligand size smaller than in case of titanium ethoxide allowed to observe an influence of the ligand size on both the growth per cycle and structural properties of TiO2. The average growth per cycle of TiO2 deposited from titanium methoxide and water (0.052 ± 0.01 nm/cycle) was essentially higher than that for TiO2 grown from titanium ethoxide and water (0.043 ± 0.01 nm/cycle). Ligands of smaller sizes were found to promote the higher crystallinity of TiO2 in comparison with the case of using the titanium precursor with ligands of bigger sizes.  相似文献   

7.
The interaction of germanium (Ge) adatoms with SiO2 (silica) plays an important role in selective, heteroepitaxial growth of Ge(100) through windows created in silica on Si(100) and in the selective growth of Ge nanoparticles on hafnia, located at the bottom of pores etched through silica. Both processes rely on the inability of Ge to accumulate on silica. In hot wire chemical vapor deposition of Ge nanoparticles from GeH4, etching of the silica has been invoked as one path to prevent accumulation of Ge on silica; whereas dense silica is not etched when Ge atoms are incident on the surface in molecular beam processes. Surface studies were conducted to determine the nature of oxidized Ge on SiO2, to reconcile the etching claim with GeH4, and to look for the additional etching product that must accompany GeO, namely SiO. Etching of silica is not found with GeH4 or GeHx fragments. A more complete examination of the Ge isotopes reveals instead the m/e 90 signal, previously attributed to GeO, originates from interactions between iron oxide impurities in the molybdenum holder, and hydrogen and GeHx fragments. Coating the Mo with gold eliminates m/e 90 from Ge TPD spectra. The high temperature m/e 74 and m/e 2 peaks observed from 800 to 900 K are attributed to GeHx decomposition to Ge and H followed by their desorption, while the appearance of GeOx is attributed to possible reactions between GeHx species with hydroxyl groups and/or oxidation of Ge clusters by background oxidants.  相似文献   

8.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Vibrational (infrared and Raman) spectroscopy has been used to characterize SiOxNy and SiOx films prepared by magnetron sputtering on steel and silicon substrates. Interference bands in the infrared reflectivity measurements provided the film thickness and the dielectric function of the films. Vibrational modes bands were obtained both from infrared and Raman spectra providing useful information on the bonding structure and the microstructure (formation of nano-voids in some coatings) for these amorphous (or nanocrystalline) coatings. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis have also been carried out to determine the composition and texture of the films, and to correlate these data with the vibrational spectroscopy studies. The angular dependence of the reflectivity spectra provides the dispersion of vibrational and interference polaritons modes, what allows to separate these two types of bands especially in the frequency regions where overlaps/resonances occurred. Finally the attenuated total reflection Fourier transform infrared measurements have been also carried out demonstrating the feasibility and high sensitivity of the technique. Comparison of the spectra of the SiOxNy films prepared in various conditions demonstrates how films can be prepared from pure silicon oxide to silicon oxynitride with reduced oxygen content.  相似文献   

10.
Thermal desorption at a chlorine-adsorbed Si(1 1 1) surface was measured with high precision. High-sensitivity measurements of the temperature dependence of the isothermal process, and thermal desorption spectra (TDS) with various parameters, heating rates and levels of surface coverage, indicated that the desorption is a second-order reaction with an activation energy of 2.2 eV. The wide dynamic-range data throw light on the ability of various methods of thermal desorption measurement to describe quantitatively the surface reaction. It is important to obtain a precise energy value, which can be done by considering the whole TDS shape, as well as isothermal data, in order to distinguish various reaction processes. Our results are consistent with model calculations.  相似文献   

11.
The processes of accumulation of ion implanted hydrogen in blisters in silicon and its release during the thermal treatment from 350 to 1020?°C have been studied by optical techniques. It was established that accumulation of gaseous hydrogen inside blisters takes place at temperatures lower than ~450–500?°C and is accompanied by the growth of blister thickness and deformation of their caps. At higher temperatures the gaseous hydrogen goes out of the cavities dissolving in silicon. Due to the internal pressure dropping the elastically deformed top layer partially relaxes and the blister thickness decreases. Etching of the surface layer reveals the agglomerations of small voids (<0.3?mm) located in the place of blisters approximately at their depth. Proceeding from the fact that the processes in blistering are similar to those in ion cut, the following conclusions with respect to the latter were drawn. The exfoliation processes themselves occur at temperatures lower than ~500?°C. The exfoliation efficiency particularly at the higher temperatures is essentially dependent on the heating rate.  相似文献   

12.
13.
The influence of the hydrogen content in several physical aspects of carbonaceous microfibres obtained from a mixture of hydrogen and hydrocarbon gas is examinated in this study. The hydrogen content is evaluated behalf a measurement of the fibres density. These changes of content depend on the manufacturing process and further treatments of the fibres. The surface energy is established after contact angle evaluation. There is not a clear relation between the surface energy and the porosity, which is a very relevant parameter in order to establish the hydrogen storage capacity of all materials.The fibres have been evaluated using Kelvin probe force microscopy (KPFM), which provides a map of the surface potential. These measurements suggest a relation between the surface potential and the hydrogen adsorbed in the surface of the fibres.  相似文献   

14.
Atomic layer deposition (ALD) of zinc oxide (ZnO) films on (0 0 0 1) sapphire substrates was conducted at low temperatures by using diethyl-zinc (DEZn) and nitrous oxide (N2O) as precursors. It was found that a monolayer-by-monolayer growth regime occurred at 300 °C in a range of DEZn flow rates from 5.7 to 8.7 μmol/min. Furthermore, the temperature self-limiting process window for the ALD-grown ZnO films was also observed ranging from 290 to 310 °C. A deposition mechanism is proposed to explain how saturated growth of ZnO is achieved by using DEZn and N2O. Transmission spectroscopic studies of the ZnO films prepared in the self-limiting regime show that the transmittances of ZnO films are as high as 80% in visible and near infrared spectra. Experimental results indicate that ZnO films with high optical quality can be achieved by ALD at low temperatures using DEZn and N2O precursors.  相似文献   

15.
The growth, and reactivity of monolayer V2O5 films supported on TiO2(1 1 0) produced via the oxidation of vapor-deposited vanadium were studied using X-ray photoelectron spectroscopy and temperature programmed desorption (TPD). Oxidation of vapor-deposited vanadium in 10−7 Torr of O2 at 600 K produced vanadia films that contained primarily V3+, while oxidation in 10−3 Torr at 400 K produced films that contained primarily V5+. The reactivity of the supported vanadia layers for the oxidation of methanol to formaldehyde was studied using TPD. The activity for this reaction was found to be a function of the oxidation state of the vanadium cations in the film.  相似文献   

16.
This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.  相似文献   

17.
The effect of corona pre-treatment on the performance of Al2O3 and SiO2 gas barrier layers applied by atomic layer deposition onto polymer-coated paperboards was studied. Both polyethylene and polylactide coated paperboards were corona treated prior to ALD. Corona treatment increased surface energies of the paperboard substrates, and this effect was still observed after several days. Al2O3 and SiO2 films were grown on top of the polymer coatings at temperature of 100 °C using the atomic layer deposition (ALD) technique. For SiO2 depositions a new precursor, bis(diethylamido) silane, was used. The positive effect of the corona pre-treatment on the barrier properties of the polymer-coated paperboards with the ALD-grown layers was more significant with polyethylene coated paperboard and with thin deposited layers (shorter ALD process). SiO2 performed similarly to Al2O3 with the PE coated board when it comes to the oxygen barrier, while the performance of SiO2 with the biopolymer-coated board was more moderate. The effect of corona pre-treatment was negligible or even negative with the biopolymer-coated board. The ALD film growth and the effect of corona treatment on different substrates require further investigation.  相似文献   

18.
Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO2 supported MgCl2/TiCl4 and TiCl4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl2 is not present while a significant amount of the Ti atoms is reduced to the Ti3+ state.  相似文献   

19.
S. Wright  O. Dippel  E. Hasselbrink   《Surface science》1997,390(1-3):209-213
The photochemical mechanisms leading to the desorption and fragmentation of Si2H6 adsorbed on a hydrogen terminated Si(100) surface have been explored by recording the time-of-flight distributions of products escaping from the surface and by using electron energy loss spectroscopy to probe possible electronic excitations. Photodesorption of intact Si2H6 involves hot electrons that lose energy and move to the conduction band edge before initiating desorption. When the wavelength of the incident light is 193 nm, Si2H6 fragments give mostly Si, SiH2, H2 and SiH4, but this pathway is quenched at longer wavelengths. This is consistent with direct excitation, but we also show that a negative ion resonance is accessible to substrate electrons that have been excited by 193 nm light.  相似文献   

20.
Nano-particulate coatings with high reflectance against solar irradiation can control undesirable thermal heating by sunlight absorption. It can reduce the energy consumption for air conditioning of houses and cars. For the objects covered by these coatings and subjected to human sight, e.g. roofing surfaces, high dazzle of reflected visible light can offend the human eyes and spoil the fine view of covered objects. The authors introduced a new optimization method in designing pigmented coatings which considers both thermal and aesthetic effects in previous studies. The optimization is possible by controlling the material, size and concentration of pigment particles. The proposed coatings maximize the reflectance of near infrared (NIR) region to care the thermal effects and minimize the visible (VIS) reflected energy to keep the dark tone because of aesthetic appeal. Two different types of copper oxide pigment particles namely cupric oxide (CuO) and cuprous oxide (Cu2O) were considered in this study. The optimum characteristics and performances are obtained and compared with titanium dioxide (TiO2) particle as a typical cool pigment. The results show that cupric oxide has much better performance for our objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号