首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.  相似文献   

2.
3.
In the quest for novel PPARα/γ dual agonists as putative drugs for the treatment of type 2 diabetes and dyslipidemia, we designed and synthesized a series of urea acetates as potential PPARα/γ dual agonists. The structure of the target compounds, intermediates were characterized by ^1H N-MR, HRMS.  相似文献   

4.

Background

An alarming requirement for finding newer antidiabetic glitazones as agonists to PPARγ are on its utmost need from past few years as the side effects associated with the available drug therapy is dreadful. In this context, herein, we have made an attempt to develop some novel glitazones as PPARγ agonists, by rational and computer aided drug design approach by implementing the principles of bioisosterism. The designed glitazones are scored for similarity with the developed 3D pharmacophore model and subjected for docking studies against PPARγ proteins. Synthesized by adopting appropriate synthetic methodology and evaluated for in vitro cytotoxicity and glucose uptake assay. Illustrations about the molecular design of glitazones, synthesis, analysis, glucose uptake activity and SAR via 3D QSAR studies are reported.

Results

The computationally designed and synthesized ligands such as 2-(4-((substituted phenylimino)methyl)phenoxy)acetic acid derivatives were analysed by IR, 1H-NMR, 13C-NMR and MS-spectral techniques. The synthesized compounds were evaluated for their in vitro cytotoxicity and glucose uptake assay on 3T3-L1 and L6 cells. Further the activity data was used to develop 3D QSAR model to establish structure activity relationships for glucose uptake activity via CoMSIA studies.

Conclusion

The results of pharmacophore, molecular docking study and in vitro evaluation of synthesized compounds were found to be in good correlation. Specifically, CPD03, 07, 08, 18, 19, 21 and 24 are the candidate glitazones exhibited significant glucose uptake activity. 3D-QSAR model revealed the scope for possible further modifications as part of optimisation to find potent anti-diabetic agents.
  相似文献   

5.
Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to vascular injury such as angioplasty. Protein kinase G (PKG) has an important role in the process of VSMC phenotype switching. In this study, we examined whether rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-γ agonist, could modulate VSMC phenotype through the PKG pathway to reduce neointimal hyperplasia after angioplasty. In vitro experiments showed that rosiglitazone inhibited the phenotype change of VSMCs from a contractile to a synthetic form. The platelet-derived growth factor (PDGF)-induced reduction of PKG level was reversed by rosiglitazone treatment, resulting in increased PKG activity. This increased activity of PKG resulted in phosphorylation of vasodilator-stimulated phosphoprotein at serine 239, leading to inhibited proliferation of VSMCs. Interestingly, rosiglitazone did not change the level of nitric oxide (NO) or cyclic guanosine monophosphate (cGMP), which are upstream of PKG, suggesting that rosiglitazone influences PKG itself. Chromatin immunoprecipitation assays for the PKG promoter showed that the activation of PKG by rosiglitazone was mediated by the increased binding of Sp1 on the promoter region of PKG. In vivo experiments showed that rosiglitazone significantly inhibited neointimal formation after balloon injury. Immunohistochemistry staining for calponin and thrombospondin showed that this effect of rosiglitazone was mediated by modulating VSMC phenotype. Our findings demonstrate that rosiglitazone is a potent modulator of VSMC phenotype, which is regulated by PKG. This activation of PKG by rosiglitazone results in reduced neointimal hyperplasia after angioplasty. These results provide important mechanistic insight into the cardiovascular-protective effect of PPARγ.  相似文献   

6.
PPARα and PPARγ play an important role in regulating glucose and lipid metabolism. The single and selective PPARα or PPARγ agonists have caused several side effects such as edema, weight gain and cardiac failure. In the recent years, the dual PPARs agonist development has become a hot topic in the antidiabetic medicinal chemistry field. In this paper, the compound CHEMBL230490 were gained from CHEMBL database, by means of complex-based pharmacophore (CBP) virtual screening, molecular docking, ADMET prediction and molecular dynamics (MD) simulations. The compound CHEMBL230490 not only displayed higher binding scores and better binding modes with the active site of PPARα a/γ, but also had more favorable the pharmacokinetic properties and toxicity evaluated by ADMET prediction. The representative compound CHEMBL230490 was performed to MDs for studying a stable binding conformation. The results indicated that the CHEMBL230490 might be a potential antidiabetic lead compound. The research provided a valuable approach in developing novel PPARα/γ dual agonists for the treatment of type 2 diabetes mellitus (T2DM).  相似文献   

7.
Nafuredin (1) is converted to nafuredin-γ (2) under mild basic conditions and both compounds exhibit the same inhibitory activity and selectivity against NADH-fumarate reductase (complex I). The total synthesis of 2 was achieved by a convergent approach using Stille coupling. The structural elements required for inhibitory activity against NADH-fumarate reductase (complex I) were then investigated by evaluation of nafuredin-γ (2) and its structural analogues.  相似文献   

8.
Adiponectin is an adipocyte-derived hormone that plays a pivotal role in the regulation of lipid and glucose metabolism. Up-regulation of adiponectin expression and production has been shown to benefit for metabolic disorders, including type 2 diabetes, hyperlipidemia, etc. The present study investigated whether the novel polymethoxylated flavonoid pentamethylquercetin (PMQ), a member of polymethoxylated flavonoids family which is present in seabuckthorn (Hippophae L.) would affect adiponectin production in differentiated 3T3-L1 adipocytes. It was found that PMQ increased the adiponectin mRNA and protein expressions in adipocytes in time- and concentration-dependent manners. The PPARγ pathway plays a important roles in this effect of PMQ because blockade of PPARγ by GW9662 eliminates the PMQ-induced up-regulation of adiponectin expression. Furthermore, significant decreases of mRNA expression and secretion of TNF-α and IL-6 were also observed in PMQ-treated cells. Taken together, our study demonstrated that PMQ up-regulates adiponectin expression via a mechanism that implicates PPARγ together with TNF-α and IL-6, suggesting that PMQ might be a potential candidate for the treatment of metabolic diseases.  相似文献   

9.
Abstract

Betulin (BE) is a pentacyclic triterpenes, obtained from natural sources and with several biological activities described, such as anti-tumoral and anti-inflammatory activities. The BE esterification at hydroxyl group (C-3 and C-28) resulted in five new ester derivatives with different numbers of carbons or halogens (chlorine and fluorine). Among these BE derivatives, two (2a e 2c) were able to significantly decrease IFN-g (*p?=?0.0391; **p?=?0.0156) and 2c modulated the expression of COX-2 better than Dexamethasone (DEXA). Regarding to cytotoxic assay, the best results were obtained for BE without modifications, with emphasis on tumoral cell lines Raji and MCF-7. The derivatives 2a and 2c showed immunomodulation activity (for the cytokines IFN-g). The presence of chorine in BE seems to be important for the ability of modulate COX-2 expression, since the ester chloride derivative 2c at 100?μM is more powerful inhibitor of COX-2 than DEXA.  相似文献   

10.
The peroxisome proliferator activator receptor-γ (PPAR-γ) remained the most successful target for management of diabetes mellitus. The present work endeavors rational designing of some novel PPAR-γ agonists bearing benzylideneamino-benzylidene-thiazolidine-2,4-dione scaffold. The research involved virtual screening of 37 different molecules by molecular docking studies performed by Molecular Design Suite (MDS) into the ligand binding domain of PPAR-γ receptor to explore the binding affinity and conformations of the molecules. Eight compounds; TZD1, TZD-4, TZD-7, TZD-16, TZD-25, TZD-28, TZD-34, and TZD-37 demonstrated high affinity for PPAR-γ binding site. The following compounds were taken into the account and synthesized using a multi-step synthesis protocol. The purity of the synthesized compounds was ascertained by sophisticated analytical techniques such as IR, NMR, Mass and elemental analysis. The compounds were tested for glucose uptake assay by using 3T3-L1 cell lines, where all the candidates exhibited nearly similar potential for uptake of glucose into the lines as that of standard drug rosiglitazone. Three molecules; TZD-1, TZD-4, and TZD-34 showed most prominent activity over hyperglycemic control. This research opened new avenues for smart designing of molecules with high efficiency towards the management of hyperglycemia.  相似文献   

11.
Peroxisome proliferator activated receptors (PPARs) have been shown to have critical roles in fatty acid oxidation, triglyceride synthesis, and lipid metabolism - making them an important target in drug discovery. Here we describe the in silico design, synthesis and in vitro characterisation of a novel series of 2,5-disubstituted indoles as PPARα/γ dual agonists. PPAR activation assays are performed with known agonists diazabenzene (WY14.643), aminopyridine (BRL49653) and bisaryl (L165.041), as positive controls. All the indole compounds synthesized are found to be active PPARα and PPARγ agonists, with particular efficacy from those with 2-naphthylmethyl substitution. This is a useful demonstration of a new de novo design methodology implemented by the protobuild program and its ability to rapidly produce novel modulators for a well characterized drug target.  相似文献   

12.
A series of thiazolidinediones analogs,as PPAR modulators,were designed,synthesized and evaluated in vitro.  相似文献   

13.
Early stage diabetic nephropathy is characterized by elevated glomerular filtration. Recent studies have identified high-glucose induced p38 MAPK (p38) over-activation in mesangial cells. Mesangial hypocontractility is the major underlying mechanism, however, no ameliorating agents are currently available. We investigated the protective effects of emodin on high-glucose induced mesangial cell hypocontractility. Mesangial cells were cultured under normal (5.6 mM) and high glucose (30 mM) conditions. Emodin was administrated at doses of 50 mg/l and 100 mg/l. Angiotension II stimulated cell surface reductions were measured to evaluate cell contractility. p38 activity was detected using Western blotting. To further explore the possible mechanism of emodin, expression of the peroxisome proliferator-activated receptor γ (PPARγ) was measured and its specific inhibitor, gw9662, was administrated. Our results showed: (1) high-glucose resulted in a 280% increase in p38 activity associated with significant impairment of mesangial contractility; (2) emodin treatment dose-dependently inhibited high-glucose induced p38 over-activation (a 40% decrease for 50 mg/l emodin and a 73% decrease for 100 mg/l emodin), and mesangial hypocontractility was ameriolated by emodin; (3) both the PPARγ mRNA and protein levels were elevated after emodin treatment; (4) inhibition of PPARγ using gw9662 effectively blocked the ameliorating effects of emodin on high-glucose induced p38 over-activation and mesangial hypocontractility. Emodin effectively ameliorated p38 over-activation and hypocontractility in high-glucose induced mesangial cells, possibly via activation of PPARγ.  相似文献   

14.
15.
16.
Diabetes affects approximately 4% of world’s population and metabolic syndrome has been directly related to obesity. There is a class of nuclear receptors, peroxisome proliferator-activated receptors (PPARs), which controls the metabolism of carbohydrates and lipids. It has been considered an attractive target to treat diabetes and metabolic syndrome. Accordingly, the primary objective of this study was to employ molecular modelling techniques to understand the factors involved in PPARδ activation. The QSAR models obtained showed good internal and external consistency and presented good validation coefficients (QSAR: q2 = 0.83, r2 = 0.87; HQSAR: q2 = 0.73, r2 = 0.90; CoMFA: q2 = 0.88, r2 = 0.94). The selected properties and the contour maps described the possible interactions between the PPARδ receptor and its agonists. From these findings, it is possible to propose molecular modifications to design new compounds with improved biological properties.  相似文献   

17.
Mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH3) catalyzes the allosterically regulated rate-limiting step of the tricarboxylic acid cycle activated. In pigs, very little is known about this gene. Here, we cloned 1,346 bp full-length cDNA and 8,778 bp genomic sequence of porcine γ subunit of IDH3 (IDH3γ). IDH3γ contains 12 exons separated by 11 introns. Real-time PCR revealed that IDH3γ mRNA were upregulated in backfat of Large White compared with Meishan and F1 hybrids, and most abundant in small intestine via tissue distribution profile. A microsatellite (“GT” repeats) in second intron was found. The selected pigs were genotyped at this microsatellite. The IDH3γ genotypes showed a significant effect on backfat thickness at thorax–waist (P < 0.05), backfat thickness at sixth to seventh thorax (P < 0.01), and average backfat thickness (P < 0.05). This site seemed to be significantly dominant in action (P < 0.05 for backfat thickness at sixth to seventh thorax, backfat thickness at thorax–waist, and average backfat thickness), and allele B was associated with increase of thickness values of these traits. This locus is possibly considered as a marker for adipose deposition traits.  相似文献   

18.
Determining the distribution of specific binding sites on biological samples with high spatial accuracy (in the order of several nanometer) is an important challenge in many fields of biological science. Combination of high-resolution atomic force microscope (AFM) topography imaging with single-molecule force spectroscopy provides a unique possibility for the detection of specific molecular recognition events. The identification and localization of specific receptor binding sites on complex heterogeneous biosurfaces such as cells and membranes are of particular interest in this context. Simultaneous topography and recognition imaging was used to unravel the nanolandscape of cells of the immune system such as macrophages. The most studied phagocytic receptors include the Fc receptors that bind to the Fc portion of immunoglobulins. Here, nanomapping of FcγRs (Fc receptors for immunoglobulin G (IgG)) was performed on fixed J774.A1 mouse macrophage cell surfaces with magnetically coated AFM tips functionalized with Fc fragments of mouse IgG via long and flexible poly(ethylene glycol) linkers. Because of possible AFM tip engulfment on living macrophages, appropriate cell fixation procedure leaving the binding activity of FcγRs practically intact was elaborated. The recognition maps revealed prominent spots (microdomains) more or less homogeneously distributed on the macrophage surface with the sizes from 4 to 300 nm. Typical recognition image contained about ∼4% of large clusters (>200 nm), which were surrounded by a massive number (∼50%) of small-size (4–30 nm) and the rest by middle-size (50, 150 nm) domains. These spots were detected from the decrease of oscillation amplitude during specific binding between Fc-coated tip and FcγRs on macrophage surfaces. In addition, the effect of osmotic swelling on the topographical landscape of macrophage surfaces and on the reorganization of FcγRs was investigated.  相似文献   

19.
Peroxisome proliferator-activated receptor α (PPARα) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARα agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly increased the expression of PPARα target genes involved in fatty acid β-oxidation in both epididymal adipose tissue and differentiated 3T3-L1 adipocytes. However, mRNA levels of adipose marker genes, such as leptin and TNFα, were decreased in epididymal adipose tissue by fenofibrate treatment. Fenofibrate not only reduced circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in obese mice. Blood glucose levels of fenofibrate-treated mice were significantly reduced during intraperitoneal glucose tolerance test compared with obese controls. These results suggest that fenofibrate-induced fatty acid β-oxidation in visceral adipose tissue may be one of the major factors leading to decreased adipocyte size and improved insulin sensitivity.  相似文献   

20.
Journal of Radioanalytical and Nuclear Chemistry - The activity concentration of a 177Lu solution was measured by the Laboratory of Radioactivity Standards in the Radioisotope Centre POLATOM. The...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号