首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring‐Down Spectrometry (CRDS). Separation of the analysed water vapour from non‐volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling‐CRDS (DS‐CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS‐CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS‐CRDS system was used to analyse the O and H isotope composition in short‐lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration‐related changes in cave drip water. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A system was developed for the automatic measurements of 13CO2 efflux to determine biodegradation of extra carbon amendments to soils. The system combines wavelength‐scanned cavity ring down laser spectroscopy (WS‐CRDS) with the open‐dynamic chamber (ODC) method. The WS‐CRDS instrument and a batch of 24 ODC are coupled via microprocessor‐controlled valves. Determination of the biodegradation requires a known δ13C value and the applied mass of the carbon compounds, and the biodegradation is calculated based on the 13CO2 mixing ratio (ppm) sampled from the headspace of the chambers. The WS‐CRDS system provided accurate detection based on parallel samples of three standard gases (13CO2 of 2, 11 and 22 ppm) that were measured simultaneously by isotope ratio mass spectrometry (linear regression R2 = 0.99). Repeated checking with the same standards showed that the WS‐CRDS system showed no drift over seven months. The applicability of the ODC was checked against the closed static chamber (CSC) method using the rapid biodegradation of cane sugar – δ13C‐labeled through C4 photosynthesis. There was no significant difference between the results from 7‐min ODC and 120‐min CSC measurements. Further, a test using samples of either cane sugar (C4) or beetroot sugar (C3) mixed into standard soil proved the target functionality of the system, which is to identify the biodegradation of carbon sources with significantly different isotopic signatures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Measurements of δ13C in CO2 have traditionally relied on samples stored in sealed vessels and subsequently analyzed using magnetic sector isotope ratio mass spectrometry (IRMS), an accurate but expensive and high‐maintenance analytical method. Recent developments in optical spectroscopy have yielded instruments that can measure δ13CO2 in continuous streams of air with precision and accuracy approaching those of IRMS, but at a fraction of the cost. However, continuous sampling is unsuited for certain applications, creating a need for conversion of these instruments for batch operation. Here, we present a flask (syringe) adaptor that allows the collection and storage of small aliquots (20–30 mL air) for injection into the cavity ring‐down spectroscopy (CRDS) instrument. We demonstrate that the adaptor's precision is similar to that of traditional IRMS (standard deviation of 0.3‰ for 385 ppm CO2 standard gas). In addition, the concentration precision (±0.3% of sample concentration) was higher for CRDS than for IRMS (±7% of sample concentration). Using the adaptor in conjunction with CRDS, we sampled soil chambers and found that soil‐respired δ13C varied between two different locations in a piñon‐juniper woodland. In a second experiment, we found no significant discrimination between the respiration of a small beetle (~5 mm) and its diet. Our work shows that the CRDS system is flexible enough to be used for the analysis of batch samples as well as for continuous sampling. This flexibility broadens the range of applications for which CRDS has the potential to replace magnetic sector IRMS. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The doubly labeled water method provides an objective and accurate measure of total energy expenditure in free‐living subjects and is considered the gold‐standard method for this measurement. Its use, however, is limited by the need to employ isotope ratio mass spectrometry (IRMS) to obtain the high‐precision isotopic abundance analyses needed to optimize the dose of expensive 18O‐labeled water. Recently, cavity‐ring down spectroscopy (CRDS) instruments have become commercially available and may serve as a less expensive alternative to IRMS. We compared the precision and accuracy of CRDS with those of IRMS for the measurement of total energy expenditure from urine specimens in 14 human subjects. The relative accuracy and precision (SD) for total body water was 0.5 ± 1% and for total energy expenditure was 0.5 ± 6%. The CRDS instrument displayed a memory between successive specimens of 5% for 18O and 9% for 2H. The memory necessitated carefully ordering of specimens to reduce isotopic disparity, performance of several injections of each specimen to condition the analyzer, and use of a mathematical memory correction on subsequent injections. These limited the specimen throughput to about one urine specimen per hour. CRDS provided accuracy and precision for isotope abundance measurements of urine that were comparable with those of IRMS. The memory problems were easily recognized by our experienced laboratory staff, but future efforts should be aimed at reducing the memory of the CRDS so that it would be less likely to result in poor reproducibility in laboratories using doubly labeled water for the first time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The thermal decomposition rate of N2O5 in 760 Torr of air as a function of temperature between 314 and 348 K has been investigated using the technique of pulsed laser cavity ring-down spectroscopy (CRDS) detection of NO3 radicals at 662 nm. The Arrhenius expression of the thermal decomposition rates determined by the CRDS experiments, which is incorporated with literature values down to 263 K, is given by 1.36 × 1015 exp{(−11300 ± 200)/T} s−1 over the temperature range 263–348 K. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 679–684, 2008  相似文献   

6.
Quantitative measurement of water vapor is essential in many fields including semiconduc-tor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy. The instrument is high-vacuum compatible, self-calibrated by using the free-spectral-range of the ring-down cavity made of low-thermal-expansion Invar. Using a single tunable diode laser working at 1.39 μm, detection of trace water vapor in vacuum and in high-purity helium gas, and also determination of humidity at ambient conditions, have been demonstrated. It indicates that the instrument can be used to detect the partial pressure of water vapor in a very broad range from 10-7 Pa to 103 Pa. Such an optical hygrometer can be potentially applied as a primary moisture standard to determine the vapor pressures of water (ice) at low temperatures.  相似文献   

7.
Several methods used in the published literature for determining the deliquescence relative humidity (DRH) of salts and the mutual deliquescence relative humidity (MDRH) of salt mixtures were reviewed. Experiments were conducted to evaluate an electrical conductivity method for determining the DRH of salts and the MDRH of salt mixtures. The electrical impedance of a conductivity cell containing Na2SO4, CaCl2 and NaCl+NaNO3+KNO3 was measured as a function of relative humidity at temperatures up to 70 C. To provide a basis for interpreting the results of the impedance measurements, computer modeling of the specific electrical conductivity of single salts and salt mixtures at 25 C also was performed. The results of the study demonstrated that the electrical conductivity method provides a convenient and accurate method for determining the DRH of single salts and the MDRH of salt mixtures. The derived DRH and MDRH values were in good agreement with those determined using a hygrometer method. The conductivity method, however, is a more reliable technique than the hygrometer method for determining the MDRH of salt mixtures because the conductivity method is insensitive to slight deviations of mixture composition from the eutonic value.  相似文献   

8.
Recently available isotope ratio infrared spectroscopy can directly measure the isotopic composition of atmospheric water vapour (δ18O, δ2H), overcoming one of the main limitations of isotope ratio mass spectrometry (IRMS) methods. Calibrating these gas‐phase instruments requires the vapourisation of liquid standards since primary standards in principle are liquids. Here we test the viability of calibrating a wavelength‐scanned cavity ring‐down spectroscopy (CRDS) instrument with vapourised liquid standards. We also quantify the dependency of the measured isotope values on the water concentration for a range of isotopic compositions. In both liquid and vapour samples, we found an increase in δ18O and δ2H with water vapour concentration. For δ18O, the slope of this increase was similar for liquid and vapour, with a slight positive relationship with sample δ‐value. For δ2H, we found diverging patterns for liquid and vapour samples, with no dependence on δ‐value for vapour, but a decreasing slope for liquid samples. We also quantified tubing memory effects to step changes in isotopic composition, avoiding concurrent changes in the water vapour concentration. Dekabon tubing exhibited much stronger, concentration‐dependent, memory effects for δ2H than stainless steel or perfluoroalkoxy (PFA) tubing. Direct vapour measurements with CRDS in a controlled experimental chamber agreed well with results obtained from vapour simultaneously collected in cold traps analysed by CRDS and IRMS. We conclude that vapour measurements can be calibrated reliably with liquid standards. We demonstrate how to take the concentration dependencies of the δ‐values into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
N2O is one of the most important greenhouse and ozone-depleting gases and has been the source of considerable concern in recent years. The oceans account for ~ 1/4 of the global N2O emission budget; however, the oceanic N2O source/sink characteristics are not well understood. To enhance the study of oceanic N2O source/sink characteristics, our laboratory developed a fully automatic underway system for surface water N2O concentration and atmospheric N2O mole fraction measurements consisting of a cavity ring-down spectroscopy (CRDS) instrument and an upstream device. The developed device can be programmed to switch the CRDS measurements from the equilibrator headspace to the atmospheric sample and the reference gas sample. The surface water N2O concentration is calculated from the equilibrium headspace N2O mole fraction in the equilibrator. The response time of this equilibrator is ~ 3.4 min, and the estimated precision of this method for surface water N2O measurements is better than 0.5% (relative standard deviation, RSD), which is one order of magnitude better than that of traditional gas chromatographic methods and can be further optimised. Data are acquired every 20 s, and the calibration frequency requirement of this system is approximately 7–10 days. This labor-saving underway system is a powerful tool for high-precision and high-resolution measurements of atmospheric and oceanic N2O and can significantly improve the study of the characteristics of oceanic N2O sources/sinks and their response to climate change.  相似文献   

10.
Methane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.  相似文献   

11.
The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited (S 1) electronic state. The ν00trans = 25861 cm−1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state (S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v′) transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00trans trans origin allowed the table to be extended to high quantum numbers v′. The torsional vibration frequencies up to v′ = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited (S 1) electronic state.  相似文献   

12.
Rate coefficients, k, for the gas‐phase reaction CH3CO + Cl2 → products (2) were measured between 253 and 384 K at 55–200 Torr (He). Rate coefficients were measured under pseudo‐first‐order conditions in CH3CO with CH3CO produced by the 248‐nm pulsed‐laser photolysis of acetone, CH3C(O)CH3, or 2,3‐butadione, CH3C(O)C(O)CH3. The loss of CH3CO was monitored by cavity ring‐down spectroscopy (CRDS) at 532 nm. Rate coefficients were determined by first‐order kinetic analysis of the CH3CO temporal profiles for [Cl2] < 1 × 1014 molecule cm?3 and the analysis of the CRDS profiles by the simultaneous kinetics and ring‐down method for experiments performed with [Cl2] > 1 × 1014 molecule cm?3. k2(T) was found to be independent of pressure, with k2(296 K) = (3.0 ± 0.5) × 10?11 cm3 molecule?1 s?1. k2(T) showed a weak negative temperature dependence that is well reproduced by the Arrhenius expression k2(T) = (2.2 ± 0.8) × 10?11 exp[(85 ± 120)/T] cm3 molecule?1 s?1. The quoted uncertainties in k2(T) are at the 2σ level (95% confidence interval) and include estimated systematic errors. A comparison of the present work with previously reported rate coefficients for the CH3CO + Cl2 reaction is presented. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 543–553, 2009  相似文献   

13.
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.  相似文献   

14.
《Chemical physics letters》2002,350(3-4):383-389
Cavity ring-down spectroscopy (CRDS) has been used to obtain the visible overtone spectra (ΔvCH=6) of neo-pentane, C(CH3)4, propane, C3H8, and n-butane, C4H10, yielding absolute f-values for the transitions to better than 3%. For the neo-pentane overtone intensity, comparison with a recent measurement using intra-cavity laser photoacoustic spectroscopy (ICL-PAS) provides favourable agreement, with improved precision. Being absolute this value may be used as a standard for relative intensity measurements obtained by ICL-PAS. The measured propane and n-butane overtone intensities, when compared to recent work using phase-shift CRDS, indicate a lack of agreement to quoted uncertainties.  相似文献   

15.
A new method of high resolution cavity ringdown spectroscopy (CRDS) was recently developed in our laboratory, where a narrow line, continuous wave (CW) single-frequency laser is used instead of a pulsed laser. Here, we will first discuss the main differences between the `traditional' pulsed CRDS and CW-CRDS. Then, we will describe our results exploiting the high intracavity power that can be achieved with CW-CRDS. Using a single-mode Ti:Sa laser, we obtained CRDS spectra where the excitation power of a single cavity mode is close to 20 W. In the virtually collisionless regime of a supersonic slit jet, we observed saturation in some of the weak rovibronic transitions of NO2 around 796 nm, as evidenced by loss of absorption intensity and formation of Doppler-free Lamb dips. In addition, in coincidence with absorption by these near infrared transitions, an appreciable fluorescence signal was detected in the visible range. According to our interpretation, this fluorescence is from NO2 levels excited by two photons in a stepwise incoherent process, with a strongly allowed second step. Since the fluorescence spectrum has the same lineshapes as the CRDS absorption spectrum, it seems that the first transition step is the one limiting the overall two-step process. In addition, we also observed very narrow fluorescence features, not coincident with any absorption feature. These must be coherent (non-stepwise), Doppler-free, two-photon transitions. Interesting new questions arise from these preliminary data, and we believe that more measurements of this kind will provide new information about the rovibronic states of NO2 in the dissociation region.  相似文献   

16.
We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 μm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 × 10−6 in absorption units (AU) or less than 17 fmol in the detection volume to be achieved.  相似文献   

17.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

18.
《Chemphyschem》2004,5(2):225-232
Kinetics and mechanism for the reaction of phenyl radical (C6H5) with ketene (H2Cβ?Cα?O) were studied by the cavity ring‐down spectrometric (CRDS) technique and hybrid DFT and ab initio molecular orbital calculations. The C6H5 transition at 504.8 nm was used to detect the consumption of the phenyl radical in the reaction. The absolute overall rate constants measured, including those for the reaction with CD2CO, can be expressed by the Arrhenius equation k=(5.9±1.8)×1011 exp[?(1160±100)/T] cm3 mol?1 s?1 over a temperature range of 301–474 K. The absence of a kinetic isotope effect suggests that direct hydrogen abstraction forming benzene and ketenyl radical is kinetically less favorable, in good agreement with the results of quantum chemical calculations at the G2MS//B3LYP6‐31G(d) level of theory for all accessible product channels, including the above abstraction and additions to the Cα, Cβ, and O sites. For application to combustion, the rate constants were extrapolated over the temperature range of 298–2500 K under atmospheric pressure by using the predicted transition‐state parameters and the adjusted entrance reaction barriers Eα=Eβ=1.2 kcal mol?1; they can be represented by the following expression in units of cm3 mol?1 s?1: kα=6.2×1019 T?2.3 exp[?7590/T] and kβ=3.2×104 T2.4 exp[?246/T].  相似文献   

19.
Summary A coulometric method is described for the decimilligram determination of carbon and hydrogen in organic compounds which involves rapid combustion in a nitrogen stream. Carbon dioxide and water derived from the combustion are introduced into a Porapak T column for separation. Then the carbon dioxide is converted to the equivalent amount of water with a LiOH converter. These quantities of water are continuously swept into a diffusion type Pt-P2O5 electrolytic cell and determined coulometrically one after the other. The electrolysis current passing through the hygrometer is automatically integrated. The analysis time is 10–12 minutes and the absolute errors are within ±0.80% for carbon and ±0.67% for hydrogen.
Zusammenfassung Eine coulometrische Methode zur CH-Bestimmung in Dezimilligramm organischer Substanz wurde beschrieben. Dazu wird eine Schnellverbrennung im Stickstoffstrom durchgeführt. Kohlendioxid und Wasser werden zur Abtrennung in eine Porapak-T-Säule geleitet. CO2 wird dann mit einem LiOH-Konverter in die äquivalente Menge Wasser umgesetzt. Die beiden Wassermengen werden in eine Elektrolysezelle aus Pt-Draht und P2O5 geleitet und nacheinander coulometrisch gemessen. Der Elektrolysestrom, der durch das Hygrometer fließt, wird automatisch integriert. Die Zeit für eine Analyse beträgt 10 bis 12 Minuten. Der absolute Fehler liegt für C bei ± 0,80%, für H bei ± 0,67%.
  相似文献   

20.
This study demonstrates the application of Wavelength‐Scanned Cavity Ring‐Down Spectroscopy (WS‐CRDS) technology which is used to measure the stable isotopic composition of water. This isotopic water analyzer incorporates an evaporator system that allows liquid water as well as water vapor to be measured with high precision. The analyzer can measure HO, HO and HD16O content of the water sample simultaneously. The results of a laboratory test and two field trials with this analyzer are described. The results of these trials show that the isotopic water analyzer gives precise, accurate measurements with little or no instrument drift for the two most common isotopologues of water. In the laboratory the analyzer has a precision of 0.5 per mil for δD and 0.1 per mil for δ18O which is similar to the precision obtained by laboratory‐based isotope ratio mass spectrometers. In the field, when measuring vapor samples, the analyzer has a precision of 1.0 per mil for δD and 0.2 per mil for δ18O. These results demonstrate that the isotopic water analyzer is a powerful tool that is appropriate for use in a wide range of applications and environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号