共查询到20条相似文献,搜索用时 15 毫秒
1.
ChaoYingWAN YongZHANG YinXiZHANG 《中国化学快报》2004,15(1):77-78
Poly (vinyl chloride)/ethylene-vinyl acetate/montmorillonite (PVC/EVA/OMMT) composites were prepared by melt blending method. Two kinds of montmorillonites were organically modified by trimethyloctadecyl ammonium and dimethyl bis (hydrogenated tallow) ammonium, respectively. The morphology and tensile properties of the resultant composites were discussed in terms of the modifier type and OMMT content. The PVC/EVA/OMMT composites have intercalated structure, which is independent of the polarity of the modifiers, while the tensile properties show strong dependence on the modifier type. The OMMT modified by polar modifier gives higher tensile ductile and strength of PVC/EVA/OMMT composites. 相似文献
2.
3.
Summary: Polymer nanocomposites formed from organically modified montmorillonite offer the promise of greatly improved properties over those of the matrix polymer, provided the organoclay can be dispersed, or exfoliated, into the polymer matrix to generate high aspect ratio particles. The exfoliation of organoclays in two series of ethylene-based polymers, ethylene-vinyl acetate copolymers and sodium ionomers of ethylene-methyacrylic acid copolymers, is described along with the properties of these nanocomposites. 相似文献
4.
Mehdi Hassan-Nejad Johannes Ganster Andreas Bohn Manfred Pinnow Bert Volkert 《Macromolecular Symposia》2009,280(1):123-129
Summary: Bio-based nanocomposites were manufactured by melt intercalation of nanoclays and cellulose acetate (CA) with and without plasticizer. Glycerol triacetate (triacetin) as plasticizer up to 30 mass%, and different types of organo-modified and unmodified montmorillonites (MMTs) as filler were used. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), were used to study clay dispersion, intercalation/exfoliation, and structure of the composites. XRD and TEM revealed very good dispersion and exfoliation of modified clay throughout the CA matrix. While for unmodified clay agglomeration and poor dispersion but an intercalated structure was observed. The mechanical properties of injection moulded test bars were determined by a tensile experiment giving tensile strength, Young's modulus and elongation at break. Adding plasticizer facilitated the processing and up to 20 mass%, increased the tensile strength, Young's modulus and elongation at break as well. Higher amount of plasticizer diminished the tensile properties except elongation showing a slight increase. In all plasticized composites, organo-modified clay improved the tensile strength and at the same time, young's modulus and elongation almost remained constant. On the other hand, plasticized CA compounded with unmodified clay revealed lower properties. In a particular case, compounding of unplasticized CA with unmodified clay resulted in superior mechanical properties with a novel structure. So that, in optimum percentage –5 mass%- of unmodified clay, tensile strength and young's modulus increased significantly by 335% and 100%, to 178 MPa and 8.4 GPa, respectively. This is a dramatic improvement in strength and stiffness of CA. Adding organo-modified clay resulted in a little improvement in tensile properties. SEM pictures of the optimum composite showed a core/shell structure with high orientation in the shell part. It is supposed that this behaviour is caused by the interaction between CA hydroxyl groups and free cations existing in the galleries of unmodified clay. 相似文献
5.
高密度聚乙烯/蒙脱土纳米复合材料膨胀阻燃体系的性能 总被引:1,自引:0,他引:1
使用以乙烯/醋酸乙烯共聚物(EVA)为相容剂的高密度聚乙烯/蒙脱土(HDPE/OMT)纳米复合材料作为基体,制备了含不同成炭剂的聚磷酸铵(APP)膨胀阻燃体系,对其阻燃性能进行了比较和研究,并分析了蒙脱土与膨胀阻燃剂协效作用的机理。热重分析(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热计结果表明:APP/季戊四醇(PER)体系熔融过程较短可形成蒙脱土增强炭层;PER/PA/OMT体系中较高的有机物含量有利于蒙脱土迁移和堆积。 相似文献
6.
7.
聚合物基纳米复合物(PNCs)具有比传统高分子材料更加优异的光学、力学、热力学等性能,广泛应用于各个工程领域.而纳米粒子(NPs)对材料性能提高的机理则是当前聚合物纳米复合物领域研究的重要问题,聚合物纳米复合体系相互作用的影响因素众多,至今尚未明确并完整建立复合体系相互作用与性能增强之间的关系.本文总结了近年来关于纳米粒子填充聚合物基体力学性能的研究,从粒子-聚合物相互作用和粒子-粒子相互作用角度阐述了聚合物纳米复合体系力学性能的增强机理,并根据体系中不同的结构关系分别总结了聚合物/未改性纳米粒子复合体系和聚合物/聚合物接枝纳米粒子复合体系中影响力学性能的因素.该部分内容具有重要的理论和实践意义,有助于构建复合体系微观结构与宏观性能之间的关系,进而对微观层面调控PNCs的力学性能提供指导. 相似文献
8.
ChaoYingWAN 《中国化学快报》2003,14(4):417-418
Poly(viyl chloride)/Na^ -montmorillonite(PVC/MMT)nanocomposites with different MMT contents were prepared via melt blending.Wide-angle X-ray diffraction(WAXD)and transmission electron microscopy(TEM)were used to characterize the structures.Effects of MMT content on the mechanical properties were also studied.It is found that PVC molecular chains can intercalate into the gallery of MMT layers during melt blending process,the stiffiness and toughness of the composites are inproved simultaneously within 0.5-7wt% MMT content,and the transparency and mechanical properties decrease as MMT conten further increases. 相似文献
9.
Danieli Galvan Fábio Carneiro Mateus Mazzucco Julio Roberto Bartoli Marcos Akira d'Ávila Ana Rita Morales Elizabeth Grillo Fernandes 《Macromolecular Symposia》2012,319(1):167-172
Summary: In this work, poly(acrylonitrile-butadiene-styrene) (ABS) and different organically modified montmorillonite clay nanocomposites were prepared by melt intercalation in a co-rotating twin screw extruder. The influence of the screw torque during processing and of the mixture of the modified organoclays in the intercalation/exfoliation of the clay in the polymeric matrix was evaluated through low angle X-ray diffraction range and capillary and parallel plate-plate rheometry. 相似文献
10.
Mirza Nadeem Ahmad Sohail Nadeem Mohsin Javed Shahid Iqbal Sadaf ul Hassan Samar O. Aljazzar Eslam B. Elkaeed Rami Adel Pashameah Eman Alzahrani Abd-ElAziem Farouk Mohammed T. Alotaibi Hisham S. M. Abd-Rabboh 《Molecules (Basel, Switzerland)》2022,27(17)
The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively. By maintaining the constant concentration of POA, different percentage loads of MMT clay were used to determine the effect of MMT clay on the properties of POA. The interaction between POA and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT) demonstrated that clay nanofillers inhibit POA combustion. 相似文献
11.
聚丙烯/PMMA/CaCO3纳米复合材料的制备、结构与力学性能 总被引:9,自引:0,他引:9
分别将经不同表面处理的纳米碳酸钙粒子与聚合物PP共混,制备PP/CaCO3和PP/PMMA/CaCO3纳米复合材料。用TEM观察了表面处理后纳米粒子的粒径与分散情况,发现复合粒子分散较均匀。用DSC与WAXD研究了复合材料的结晶行为,发现原位聚合制备的PMMA/CaCO3纳米复合粒子与PP共混后,PP有异相成核作用,出现了不稳定的PPβ晶型。PP/PMMA/CaCO3纳米复合材料力学性能有大幅度的提高。 相似文献
12.
In this work industrial scraps of poly(ethylene terephthalate) (PET) were used for the production of foamed sheets. The process was performed by making use of a chemical blowing agent (CBA) in the extrusion process. Due to the low intrinsic viscosity of the recycled PET (IV=0.48dl/g), a chain extender was also used in order to increase the molecular weight of the polymer matrix. Pyromellitic dianhydride (PMDA) and Hydrocerol CT 534 were chosen as chain extender and CBA, respectively. The reactive extrusion and foaming were performed in a two step process, analyzing the feasibility regarding an eventual use in an industrial context. Rheological characterization was carried out on PET samples previously treated with PMDA, as well as the morphological study was performed to define the cellular structure of the foams produced. Moreover, in order to correlate the working conditions in the reactive and the foaming processes with the final morphology of the foams, a mathematical modelling of the foaming process was applied. 相似文献
13.
The influence of matrix viscosity and polarity on ethylene‐vinyl acetate copolymer (EVA) nanocomposites was studied. Five different EVA grades, with different melt flow indexes (MFIs) and/or vinyl acetate (VA) contents, were mixed with two montmorillonite (MMT) nanoclays: pristine and modified with a polar surfactant, producing 75/25 w/w% masterbatches which were subsequently diluted in the EVA matrix to obtain 5 wt% MMT nanocomposites. Although the same VA content, WAXS results, rheological measurements and TEM analysis showed that the lower the EVA viscosity, the greater the tendency to obtain exfoliated and well dispersed nanocomposites with the organically modified clay. On the other hand, the high viscosity EVA nanocomposites showed that the (001) organoclay diffraction peak was shifted to higher values of 2θ, suggesting lamellae collapsing. TGA and FTIR measurements were used to probe the thermal degradation of organoclay; furthermore, it was not possible to identify, by the techniques used, any reaction between the VA groups and hydroxyl surfactant groups. Thus, it was inferred that the organic surfactant was removed (or ejected) from the clay galleries as a consequence of huge shear tensions developed during processing of the masterbatches/nanocomposites with high viscosity EVA matrices. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
15.
Different polymerizable ammonium surfactants were successfully synthesized via Michael‐addition and quaternarization reactions. Organoclays containing reactive methacrylate groups were prepared by the cationic exchange process. Intercalated nanocomposites were produced by UV initiated polymerization with 5 wt.‐% organophilic clay loading. DMTA tests and tensile analysis implied that a long chain polymerizable modifier could crosslink with the polymer matrix, and mechanical and tensile properties were enhanced dramatically about 80%. Water sorption was not elevated, which was determined by the polymer itself and the hydrophobicity of the modifier, although the water permeation was improved.
16.
Glycerol: a promising agent for nanodispersion and compatibility of EVA/organomodified montmorillonite nanocomposites 下载免费PDF全文
Ethylene‐vinyl acetate (EVA) nanocomposites were extruded with two types of organomodified montmorillonite (OMMT) and 1 wt% glycerol. The characterization of the nanocomposites was performed by transmission electron microscopy, X‐ray diffraction, differential scanning calorimetry, and dynamic mechanical analysis. The experimental results revealed that glycerol improved the Cloisite 30B clay exfoliation and promoted a rise in aspect ratio of the Cloisite 20A clay. In the rubbery region, the EVA/G showed a higher storage modulus than the EVA, as a result of the network of hydrogen bonds. The entanglements of long chains were more effective in the restrictions of large‐scale movements than the chemical interactions. The addition of glycerol promoted greater reinforcement and an increase in the tenacity of the nanocomposites in the glassy region. The use of glycerol for the production of EVA/OMMT nanocomposites was found to be promising. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Silver nanoparticles(AgNPs) are widely adopted in polyurethane foams(PUFs) as a type of antibacterial agent. However, due to its poor interfacial interaction, Ag NPs are difficult to be dispersed in the polymer matrix uniformly, which deteriorates the enhancement effect. In this paper, silver-coated graphene nanocomposite(Ag/GO) is prepared by an enzyme reductant which is efficient and non-toxic. Compared with traditional antibacterial agent, the Ag/GO nanoparticles can be uniformly dispersed in... 相似文献
18.
19.
Guoliang Wu Guangpeng Liu Yangling Zang Yanbing Lu Yuanqin Xiong Weijian Xu 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(7):647-654
A long-chain surfactant, enzoylbenzyl-N,N-dimethyl-N-octadecylammonium bromide (BDOB) with a benzophenone group, was synthesized to modify the montmorillonites (MMT) for the preparation of nanocomposites via photo-induced polymerization. The BDOB-modified MMT was characterized by the fourier transform infrared spectrometer (FTIR), thermal gravimetric analyzer (TGA) and X-ray diffraction (XRD), and the results of XRD indicated that the intercalated structures of BDOB-modified MMT was obtained. The conversion of the bisphenol A epoxy diacrylate (EA) was quantified by the FTIR, and the results indicated that conversion increased with an increase in the amount of BDOB-modified MMT. The morphologies of the UV-cured EA/MMT nanocomposites prepared from this organically modified MMT were studied by means of XRD and TEM, and the results showed that all the samples contained an intercalated structure with partial exfoliated structure. The results of TGA and mechanical properties also indicated that the thermal and mechanical properties of UV-cured nanocomposites were significantly enhanced due to the presence of the long chain surfactant organically modified MMT. 相似文献
20.
MingFuHUANC JiuGaoYU XiaoFeiMA 《中国化学快报》2005,16(4):561-564
In this paper, the conception of melt-intercalation was introduced into the natural polymer field, and the thermoplastic starch/ethanolamine-activated montmorillonite (TPS/EMMT)nanocomposites were prepared by extruding the composites of EMMT and TPS, plasticized with ethanolamine/formamide. Wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM) revealed that TPS was intercalated into the layers of EMMT successfully and formed the intercalation nanocomposites with EMMT. When EMMT content was wt.10%, the mechanical testing indicated that the tensile stress of the nanocomposites reached 9.69 MPa, and the tensile strain reached 74.07%, Youngs modulus increased from the 47.23 MPa of TPS to 184.11 MPa of TPS/EMMT nanocomposites, and breaking energy increased from 1.34 N.m to 2.15 N.m after they had been stored at RH25% for 14 days. 相似文献