首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A trend in developing biocompatible scaffolds for tissue engineering has been to seek an ideal single material for which a given cell type will exhibit favorable behavior. While an ideal single material has proven elusive, scaffold manufacture using combinations of specialist materials can produce more versatile structures. By controlling the percentage and architecture of material components, mechanical properties, cell attachment, and proliferation may be optimized for a given function. Three specialist materials, poly-ϵ-caprolactone (PCL), fibrin, and alginate, were incorporated into multi-component scaffolds for a series of experiments testing each component with culture of fibroblasts. The rigid and formable PCL provided structure, the fibrin pore-filler allowed for cell attachment, and alginate thread provided a nutrient transfer pathway in lieu of a vascular system. The efficacy of these scaffolds was judged on fibroblast distribution and population after 7-12 days of culture.  相似文献   

2.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

3.
高长有 《高分子科学》2011,29(2):233-240
The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying.In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage.Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds,they were remarkably elongated,forming a fibroblast-like morphology.Moreover,a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks.The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.  相似文献   

4.
Electrospun micro- and nanofiber scaffolds have gained interest in biomedical applications, especially in tissue engineering, because they can be used to reproduce the structure of the extracellular matrix (ECM) of natural tissue. The selection of the solvent is an important factor which affects the diameter, the surface morphology and the crystallinity of the electrospun fibers, and, accordingly, their mechanical properties as well as their degradation kinetics. Furthermore, the surface morphology of the electrospun fibres can be controlled by solvent vapour pressure to produce porous structures which might be helpful for cell adhesion and proliferation. In the present work, poly (L-lactic acid) (PLLA) has been electrospun using solvents with different vapour pressures to investigate the influences of the solvent vapour pressure on morphology, diameter, crystallinity and mechanical properties of the electrospun fiber scaffolds. The results show that the vapour pressure of the solvents (or solvent mixtures) play an important role in the fiber diameter and crystallinity. Furthermore, the crystallinity of the fibers is increased by lowering the vapour pressure of the used solvent. In addition, the mechanical properties (e.g., tensile strength and Young's modulus) are strongly dependent on morphological features such average fibers diameter. The smaller the average diameter, the higher the tensile strength and Young's modulus.  相似文献   

5.
A nano-structured scaffold was designed for bone repair using collagen, hyaluronic acid (HYA) and nano-bioactive glass (NBaG) as its main components. The collagen-HYA/NBaG scaffold was prepared by using a freeze-drying technique and characterized by scanning electron microscopy (SEM). Osteoblastls were seeded on these scaffolds and their proliferation rate, alkaline phosphatase (ALP) activity and ability to form mineralized bone nodules were compared with those osteoblasts grown on cell culture plastic surfaces. The cross-section morphology shows that the collagen-HYA/NBaG scaffold possessed a three-dimensional (3D) interconnected homogenous porous structure. The results obtained from biological assessment show that this scaffold did not negatively affect osteoblasts proliferation rate and improves osteoblasts function as shown by increasing the ALP activity and calcium deposition and formation of mineralized bone nodules. Therefore, the composite scaffolds could provide a favorable environment for initial cell adhesion, maintained cell viability and cell proliferation, and had good in-vitro biocompatibility.  相似文献   

6.
2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel‐based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol‐ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS). By varying the concentration of VS, scaffold stiffness ranges from 0.13 to 0.76 kPa. Cell morphology in all groups demonstrates that cells are able to spread and interact with the scaffold through day 5. Although the viability in all groups is high, proliferation of Schwann cells within the scaffold of G* = 0.53 kPa is significantly higher than other groups. This result is ≈5× lower than previously reported optimal stiffnesses on 2D surfaces, demonstrating the need for correlation of 3D cell response to mechanical modulus. As proliferation is the first step in Schwann cell integration into peripheral nerve conduits, these scaffolds demonstrate that the stiffness is a critical parameter to optimizing the regenerative process.

  相似文献   


7.
With the ability to form a submicron-sized fibrous structure with interconnected pores mimicking the extracellular matrix (ECM) for tissue formation, electrospinning was used to fabricate ultra-fine fiber mats of hexanoyl chitosan (H-chitosan) for potential use as skin tissue scaffolds. In the present communication, the in vitro biocompatibility of the electrospun fiber mats was evaluated. Indirect cytotoxicity evaluation of the fiber mats with mouse fibroblasts (L929) revealed that the materials were non-toxic and did not release substances harmful to living cells. The potential for use of the fiber mats as skin tissue scaffolds was further assessed in terms of the attachment and the proliferation of human keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) that were seeded or cultured on the scaffolds at different times. The results showed that the electrospun fibrous scaffolds could support the attachment and the proliferation of both types of cells, especially for HaCaT. In addition, the cells cultured on the fibrous scaffolds exhibited normal cell shapes and integrated well with surrounding fibers. The obtained results confirmed the potential for use of the electrospun H-chitosan fiber mats as scaffolds for skin tissue engineering.  相似文献   

8.
Porous nano-hydroxyapatite/polycaprolactone (nHA/PCL) scaffolds with different composition ratios of nHA/PCL were fabricated via a melt-molding/porogen leaching technique. All scaffolds were characterized before and after degradation in vitro for six months. The original scaffolds had high porosity at around 70% and showed decreasing compressive modulus (from 24.48 to 2.69 MPa for hydrated scaffolds) with the introduction of nHA. It was noted that the scaffolds could retain relatively stable architecture and mechanical properties for at least six months, although some slight changes happened with the nHA/PCL scaffolds in the mass, the nHA content, the PCL molecular weight and the crystallinity. Moreover, during the 7 days culture of bone marrow stromal cells (BMSCs) on scaffolds, the cell adhesion and proliferation of BMSCs were presented well on both the surface and the cross-section of the scaffolds. All of these results suggested the nHA/PCL scaffolds to be promising in bone tissue engineering.  相似文献   

9.
The mechanical strength of polymer scaffold is closely related to its crystallinity. In this work, cellulose nanocrystals (CNC) were incorporated into poly-l-lactide (PLLA) scaffold which was fabricated by selective laser sintering, aiming to improve the mechanical properties. CNC possesses numerous hydroxyl groups which might form hydrogen bond with PLLA molecular chains. The hydrogen bond induces the ordered arrangement of PLLA chain by using CNC as heterogeneous nucleating agent, thereby increasing crystallization rate and crystallinity. Results showed that PLLA scaffolds with 3 wt% CNC resulted in 191%, 351%, 34%, 83.5%, 56% increase in compressive strength, compressive modulus, tensile strength, tensile modulus and Vickers hardness, respectively. Encouragingly, with the incorporation of hydrophilic CNC, the PLLA/CNC scaffolds showed not only better hydrophilicity, but also faster degradation than PLLA. In vitro cell culture studies proved that the PLLA/CNC scaffolds were biocompatible and capable of supporting cell adhesion, proliferation and differentiation. The above results indicated that the PLLA/CNC scaffolds may therefore be a potential replacement in bone repair.  相似文献   

10.
张舵  章培标 《高分子科学》2011,29(2):215-244
Biodegradable porous nanocomposite scaffolds of poly(lactide-co-glycolide)(PLGA) and L-lactic acid(LAc) oligomer surface-grafted hydroxyapatite nanoparticles(op-HA) with a honeycomb monolith structure were fabricated with the single-phase solution freeze-drying method.The effects of different freezing temperatures on the properties of the scaffolds,such as microstructures,compressive strength,cell penetration and cell proliferation were studied.The highly porous and well interconnected scaffolds with a tunable pore structure were obtained.The effect of different freezing temperature(4℃,-20℃,-80℃and -196℃) was investigated in relation to the scaffold morphology,the porosity varied from 91.2%to 83.0%and the average pore diameter varied from(167.2±62.6)μm to(11.9±4.2)μm while theσ10 increased significantly.The cell proliferation were decreased and associated with the above-mentioned properties.Uniform distribution of op-HA particles and homogeneous roughness of pore wall surfaces were found in the 4℃frozen scaffold.The 4℃frozen scaffold exhibited better cell penetration and increased cell proliferation because of its larger pore size,higher porosity and interconnection.The microstructures described here provide a new approach for the design and fabrication of op-HA/PLGA based scaffold materials with potentially broad applicability for replacement of bone defects.  相似文献   

11.
Electrospun nanofibers are of the same length scale as the native extracellular matrix and have been extensively reported to facilitate adhesion and proliferation of cells and to promote tissue repair and regeneration. With a primary focus on tissue repair and regeneration using electrospun scaffolds, only a few studies involved electrospun nanofiber scaffolds directing cell behaviors have been reported. In this study, we prepared electrospun nanofiber scaffolds with distinct fiber configurations, namely, random and aligned orientations of nanofibers, as well as oriented yarns, and investigated their effects on cell behaviors. Our results showed that these scaffolds supported good proliferation and viability of murine fibroblasts. Fiber configuration profoundly influenced cell morpho-logy and orientation but showed no effects on cell proliferation rate. The yarn scaffold had comparable total protein accumulation with the random and aligned scaffolds, but it supported a greater pro-liferation rate of fibroblasts with significantly elevated collagen de-position due to its porous fibrous configuration. Cell-seeded yarn scaffolds showed a greater Young's modulus compared with cell-free controls as early as 1 week. Together with its unique fiber configuration similar to the native extracellular matrix of the myocardium, the yarn scaffold might be a suitable matrix material for modeling cardiac fibrotic disorders.  相似文献   

12.
Poly (glycerol sebacate) (PGS) elastomer scaffolds with different porosity for skin tissue engineering were fabricated via particulate leaching. The introduction of pores lowers the hydrophilicity but improves the water uptake capability of PGS. The gel content of PGS increases with the increase of salt mass ratio, but the degree of swelling goes the opposite way due to the existence of the porous structure. The degradation rate of PGS can be tailored and controlled by the porous structure, which is of great value for its applications in tissue engineering. The feasibility of these porous PGS scaffolds for skin tissue engineering was evaluated by seeding mouse dermal fibroblasts (MDFs) onto the scaffold. In vitro cell culture results indicate good attachment, proliferation and deep penetration of MDFs into porous PGS scaffolds, which confirms the excellent biocompatibility of these scaffolds.  相似文献   

13.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

14.
Poly(lactide‐co‐glycolide) (PLGA) scaffolds embedded spatially with hydroxyapatite (HA) particles on the pore walls (PLGA/HA‐S) were fabricated by using HA‐coated paraffin spheres as porogens, which were prepared by Pickering emulsion. For comparisons, PLGA scaffolds loaded with same amount of HA particles (2%) in the matrix (PLGA/HA‐M) and pure PLGA scaffolds were prepared by using pure paraffin spheres as porogens. Although the three types of scaffolds had same pore size (450–600 µm) and similar porosity (90%–93%), the PLGA/HA‐S showed the highest compression modulus. The embedment of the HA particles on the pore walls endow the PLGA/HA‐S scaffold with a stronger ability of protein adsorption and mineralization as well as a larger mechanical strength against compression. In vitro culture of rat bone marrow stem cells revealed that cell morphology and proliferation ability were similar on all the scaffolds. However, the alkaline phosphatase activity was significantly improved for the cells cultured on the PLGA/HA‐S scaffolds. Therefore, the method for fabricating scaffolds with spatially embedded nanoparticles provides a new way to obtain the bioactive scaffolds for tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

16.
Due to their potential renewable materials-based tissue engineering scaffolds has gained more attention. Therefore, researchers are looking for new materials to be used as a scaffold. In this study, we have focused on the development of a nanocomposite scaffold for bone tissue engineering (using bacterial cellulose (BC) and β-glucan (β-G)) via free radical polymerization and freeze-drying technique. Hydroxyapatite nanoparticles (n-HAp) and graphene oxide (GO) were added as reinforcement materials. The structural changes, surface morphology, porosity, and mechanical properties were investigated through spectroscopic and analytical techniques like Fourier transformation infrared (FT-IR), scanning electron microscope (SEM), Brunauer–Emmett-Teller (BET), and universal testing machine Instron. The scaffolds showed remarkable stability, aqueous degradation, spongy morphology, porosity, and mechanical properties. Antibacterial activities were performed against gram -ive and gram + ive bacterial strains. The BgC-1.4 scaffold was found more antibacterial compared to BgC-1.3, BgC-1.2, and BgC-1.1. The cell culture and cytotoxicity were evaluated using the MC3T3-E1 cell line. More cell growth was observed onto BgC-1.4 due to its uniform interrelated pores distribution, surface roughness, better mechanical properties, considerable biochemical affinity towards cell adhesion, proliferation, and biocompatibility. These nanocomposite scaffolds can be potential biomaterials for fractured bones in orthopedic tissue engineering.  相似文献   

17.
Studies investigate the electrospinnability of poly(ε-caprolactone)/protein blends to produce fibers for tissue engineering applications. However, no reports show that zein can improve the scaffolding capacity toward stem cells and promote antiadhesive and bactericidal properties to the poly(ε-caprolactone)/zein fibers. We create fibers with average diameters ranging from 200 to 400 nm from the electrospinning of poly(ε-caprolactone)/protein mixtures. Poly(ε-caprolactone)/zein blends are electrospinnable at zein concentration between 20 and 40 wt% in a 70/30 formic acid/acetic acid mixture. Water contact angle measurements indicate that zein increases fiber hydrophilicity. The water contact angle decreases from 118° (pure poly(ε-caprolactone) fiber) to 73° for the scaffold containing 40 wt% zein. The zein (40 wt%) significantly increases Young's modulus from 260 MPa (pure poly(ε-caprolactone) fibers) to 980 MPa (poly(ε-caprolactone)/zein fibers) with no substantial influence on elongation at break (ε ≥ 125%) and tensile strength (≥0.040 MPa). The electrospun scaffolds containing zein also promote cell adhesion, proliferation, and spreading of adipose-derived human mesenchymal stem cells for at least 7 days of culture. The zein on poly(ε-caprolactone)/zein fibers can prevent the attachment and proliferation of Escherichia coli and Staphylococcus aureus. We propose these materials for wound healing and skin repair.  相似文献   

18.
组织工程用可生物降解聚合物多孔支架制备方法研究进展   总被引:1,自引:0,他引:1  
可生物降解高分子多孔支架已广泛用作各种再生新组织模板,组织工程要求支架要有着良好的相互连通、高度开放的多孔结构,以实现细胞的增殖和分化。因此,如何把材料加工成满足生物体要求的结构至关重要。本文对最近几年组织工程用高孔隙率三维支架的制备方法进行了综述,并指出了各种方法的优缺点,展望了可降解高分子支架制备方法的发展前景。  相似文献   

19.
Porous chitosan scaffolds with possible tissue engineering applications were synthesized by using lyophilization and supercritical carbon dioxide (sc.CO2) drying technique. 1% Chitosan (CS) solution in aq. acetic acid was treated with 37% formaldehyde solution; the resulting hydrogels were subjected to solvent-exchange prior to the final treatment procedures. Their morphology, pore structure, and physical properties were characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the specific surface areas and porosities of scaffolds were determined by using N2 adsorption. The sc.CO2 treated scaffolds showed a much greater surface area in comparison to the lyophilized one. Hence, sc.CO2 treated scaffolds is better for cell proliferation. We further investigated the bioactivity of sc.CO2 treated scaffolds using simulated body fluid (SBF). The sc.CO2 assisted chitosan scaffold prepared by using green chemistry approach is highly pure and from a hygienic point of view, it is an ideal material for tissue engineering applications.  相似文献   

20.
This paper presents a method for the preparation of porous poly(L-lactide)/poly[(L-lactide)-co-glycolide] scaffolds for tissue engineering. Scaffolds were prepared by a mold pressing-salt leaching technique from structured microparticles. The total porosity was in the range 70-85%. The pore size distribution was bimodal. Large pores, susceptible for osteoblasts growth and proliferation had the dimensions 50-400 microm. Small pores, dedicated to the diffusion of nutrients or/and metabolites of bone forming cells, as well as the products of hydrolysis of polyesters from the walls of the scaffold, had sizes in the range 2 nm-5 microm. The scaffolds had good mechanical strength (compressive modulus equal to 41 MPa and a strength of 1.64 MPa for 74% porosity). Scaffolds were tested in vitro with human osteoblast-like cells (MG-63). It was found that the viability of cells seeded within the scaffolds obtained using the mold pressing-salt leaching technique from structured microparticles was better when compared to cells cultured in scaffolds obtained by traditional methods. After 34 d of culture, cells within the tested scaffolds were organized in a tissue-like structure. Photos of section of macro- and mesoporous PLLA/PLGA scaffold containing 50 wt.-% of PLGA microspheres after 34 d of culture. Dark spots mark MG-63 cells, white areas belong to the scaffold. The specimen was stained with haematoxylin/eosin. Bar = 100 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号