首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-walled carbon nanotubes (MWCNT) have been used as fillers to improve thermal properties such as glass transition temperature (T g) of epoxy materials. In this work, nanocomposites based on diglycidyl ether of bisphenol A resin and triethylenetetramine (TETA) were prepared by a three-roll mill process with TETA-functionalized (MWCNT–COTETA) and neat MWCNT. Thermogravimetric analysis of the nanofillers showed that in the case of MWCNT–COTETA, there is a 15 % mass loss that can be attributed to –COTETA and residual oxygen-containing functional groups. The influence of chemical modification on the behavior of the glass T g was evaluated by dynamic scanning calorimetry. The MWCNT–COTETA allowed a ~20 °C reproducible increase of T g in concentrations in the range of 0.5–1.0 mass%. Furthermore, images obtained by scanning electron microscopy were used to investigate the morphology of the polymer matrix and its interfaces. The quality of the dispersion and interaction of the nanotubes in the epoxy matrix was assessed from the images. Both the neat epoxy and the nanocomposite with MWCNT showed low thermal shrinkage upon curing.  相似文献   

2.
Flame retardant additives of montmorillonite (MMT) and multi-walled carbon nanotube (MWCNT) were embedded in epoxy resin to improve the resin's flame retardant properties. MMT was fluorinated to exfoliate its layers and enhance its dispersion into the epoxy resin. The MWCNT was also fluorinated to create hydrophobic functional groups for improved dispersion into the epoxy resin. The MWCNT reduced the degradation rate of the epoxy resin and increased the char yield. Limiting oxygen index also increased showing first order against char yield. The exfoliated MMT acted as an energy storage medium to hinder thermal transfer within the epoxy resin. The activation energy increased almost two times by fluorinated MMT/MWCNT additives. The fluorination of the additives, MMT and MWCNT significantly improved the flame retardant properties of the epoxy resin.  相似文献   

3.
4.
Abstract

A hybrid nanocomposite based on ethylene propylene diene monomer/carboxylated styrene-butadiene rubber (EPDM/XSBR) blend with different concentrations (0–7 phr) of multiwall carbon nanotube (MWCNT) was prepared on a two-roll mill. The role of grafted maleic anhydride (EPDM-g-MA) as compatibilizer and the effect of different concentrations of MWCNT on mechanical properties, morphology, rheological and curing characteristics of nanocomposites were investigated. The curing behavior of the prepared nanocomposites was studied using a rheometer. Also, the microstructure of nanocomposites was observed using TEM. By increasing the MWCNT concentration in the compatible blends, the curing time and scorch time of the blends decreased, while the maximum and minimum torque increased. Failure surface morphology studies showed that the existence of EPDM-g-MAH compatibilizer improved the distribution of MWCNT within the polymer matrix and uniform distribution of MWCNT with a small amount of aggregation was obtained. On the other hand, the presence of MWCNT in the matrix led to a sharper surface of the fracture. Also, mechanical properties such as modulus, tensile strength, hardness, fatigue, resilience and elongation-at-break for compatible EPDM/XSBR nanocomposite showed better results than those for incompatible composite.  相似文献   

5.
用自制的带甲基侧基的环氧树脂(TMBP)作为界面增容剂, 从拉伸性能、键合胶含量、动态性能、扫描电镜和流变性能等方面, 研究了TMBP对炭黑在丁苯橡胶中分散度的影响, 并与市售通用双酚A型环氧树脂(E-51)和橡胶工业常用软化剂邻苯二甲酸二辛酯(DOP)进行了比较. 结果表明, 带甲基侧基的环氧树脂TMBP在提高炭黑分散性方面的效果远比E-51好, 其作用模式具有典型的增容特性.  相似文献   

6.
The electrical, thermal and mechanical properties of nanocomposites, based on polypropylene (PP) filled by multi-walled carbon nanotubes (MWCNTs) and organo-clay (OC), were studied with the purpose of finding out the effect of OC on the microstructure of MWCNTs dispersion and PP/MWCNT/OC composites. It was found that addition of organo-clay nanoparticles improved nanotube dispersion and enhanced electrical properties of PP/MWCNT nanocomposites. Addition of organo-clay (MWCNT/OC ratio was 1/1) reduced the percolation threshold of PP/MWCNT nanocomposites from ?c = 0.95 vol.% to ?c = 0.68 vol.% of carbon nanotubes, while the level of conductivity became 2–4 orders of magnitude higher. The DSC and DMA analyses have shown that the influence of organo-clay on the thermal and mechanical properties of material was not significant in composites with both fillers as compared to PP/OC. Such an effect can be caused by stronger interaction of OC with carbon nanotubes than with polymer matrix.  相似文献   

7.
Electro-conductive cellulosic paper has attracted great attention as a promising alternative material in the emerging field of flexible and portable electronic devices. However, the environmentally friendly fabrication of electro-conductive cellulosic paper still remains challenging. Herein, green multi-walled carbon nanotube (MWCNT)/graphene oxide (GO) nanocomposites towards the sustainable development strategy were developed and subsequently used to impart electro-conductivity to cellulosic paper via surface coating process. GO exfoliated from graphite powder was used as a dispersant to improve the dispersion of MWCNTs in water media, and nanocrystalline cellulose (NCC) derived from cotton fibers was employed as a binder for the MWCNT/GO nanocomposites. Effect of NCC amount on the rheological behavior, particle size distribution, sedimentation stability and zeta potential of MWCNT/GO nanocomposites as well as the electro-conductivity and mechanical properties of coated paper was investigated. Results demonstrated that NCC enhanced the dispersion of MWCNT/GO nanocomposites in addition to serving as a binder. Surface coating application of MWCNT/GO nanocomposites was found to impart high electro-conductivity of up to 892 S m?1 to the cellulosic paper while improving its mechanical properties.  相似文献   

8.
Diglycidyl ether of bisphenol A (DGEBA)‐bridged polyorganosiloxane precursors have been prepared successfully by reacting diglycidyl ether of bisphenol A epoxy resin with 3‐aminopropyltriethoxysilane. Acid‐modified and unmodified multiwalled carbon nanotube (MWCNT) were dispersed in the diglycidyl ether of bisphenol A‐bridged polyorganosiloxane precursors and cured to prepare the carbon nanotube/diglycidyl ether of bisphenol A‐bridged polysilsesquioxane (MWCNT/DGEBA‐PSSQ) composites. The molecular motion of MWCNT/DGEBA‐PSSQ nanocomposites was studied by high‐resolution solid‐state 13C NMR. Acid‐modification can improve the affinity between MWCNT and the polymer matrix. The molecular motion of the DGEBA‐PSSQ decreased with acid‐modified MWCNT content. However, when unmodified MWCNT was used, the molecular motion of the DGEBA‐PSSQ was increased. SEM and TEM microphotographs confirm that acid‐modified MWCNT exhibits better dispersion than unmodified MWCNT in DGBEA‐PSSQ. The dynamic mechanical properties of acid‐modified MWCNT/DGBEA‐PSSQ composites are more favorable than those of unmodified MWCNT. Tg of the DGEBA‐PSSQ decreased from 174.0 °C (neat DGEBA‐PSSQ) to 159.0 °C (1 wt % unmodified MWCNT) and 156.0 °C (1 wt % acid‐modified MWCNT). The storage modulus (at 30 °C) of the DGEBA‐PSSQ increased from 1.23 × 109 Pa (neat DGEBA‐PSSQ) to 1.65 × 109 Pa (1 wt % acid‐modified MWCNT). However, when unmodified MWCNT was used, the storage modulus of the DGEBA‐PSSQ decreased to 6.88 × 108 Pa (1 wt % unmodified MWCNT). At high temperature, above 150 °C, storage modulus of nanocomposites was higher than that of neat polymer system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 472–482, 2008  相似文献   

9.
《先进技术聚合物》2018,29(9):2457-2466
The corrosion protection performance of epoxy coatings could be enhanced by incorporation of nanofillers such as MWCNT. However, a homogeneous dispersion of MWCNT in epoxy polymer is still a teasing challenge. Herein, we report an environmentally benign single‐step supercritical CO2 processing method to improve the dispersion of MWCNT in epoxy matrix in order to achieve an effective anticorrosive coating. The executed approach provides a cluster‐free uniform distribution of MWCNT in epoxy matrix as characterized with UV‐visible spectroscopy, Fourier transforms infrared spectroscopy, X‐ray diffraction, and surface analysis. The anticorrosive characteristics of MWCNT/epoxy coating were studied in NaCl as well as in photodegraded dye medium through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. We observed the remarkable corrosion of model metal substrate in photodegraded dye medium besides NaCl medium. In both mediums, the protection efficacy of MWCNT/epoxy coating was deduced from the stable impedance arcs in Nyquist plot and increased impedance modulus. The electrochemical impedance spectra were best fitted with equivalent circuits showing the higher values of pore resistance. Also, the MWCNT/epoxy coating exhibited a positive shift of corrosion potential and possessed a lower corrosion rate as compared with neat epoxy coating. More direct evidence of the excellent barrier properties for MWCNT/epoxy coating was visualized in SEM images. The obtained results implied that the superior dispersion of MWCNT into epoxy matrix significantly reduces the porosity of coating and inhibits the permeability of corrosive ions. We expect supercritical CO2 assisted dispersion method can offer an efficient, cost‐effective, and industrially viable route to develop high performance protective coatings for varied commercialized applications.  相似文献   

10.
Three types of commercially available organophilic Montmorillonite (Cloisite 30B, 25A and 15A) were used to prepare VARTM epoxy resin nanocomposites in order to study the effect of the nanoclay organophilic modification on the epoxy matrix. The morphology of the dispersions was investigated through XRD and TEM analyses. The thermal stability of the nanocomposites was studied by means of HI-RES TG measurements and the influence of the nanoclay on the viscosity of the resin was investigated through rheological measurements. It was found that the nanoclay modification had no significant influence on the dispersion and on the thermal properties of the nanocomposites. Areas of exfoliated and intercalated morphology were observed. The viscosity of the resin furthermore did not exceed the critical value of the infusion process.  相似文献   

11.
We report on the effect of processing conditions on rheology, thermal and electrical properties of nanocomposites containing 0.02–0.3 wt % multiwall carbon nanotubes in an epoxy resin. The influence of the sonication, the surface functionalization during mixing, as well as the application of external magnetic field (EMF) throughout the curing process was examined. Rheological tests combined with optical microscopy visualization are proved as a very useful methodology to determine the optimal processing conditions for the preparation of the nanocomposites. The Raman spectra provide evidence for more pronounced effect on the functionalized with hardener compositions, particularly by curing upon application of EMF. Different chain morphology of CNTs is created depending of the preparation conditions, which induced different effects on the thermal and electrical properties of the nanocomposites. The thermal degradation peak is significantly shifted towards higher temperatures by increasing the nanotube content, this confirming that even the small amount of carbon nanotubes produces a strong barrier effect for the volatile products during the degradation. The ac conductivity measurements revealed lower values of the percolation threshold (pc) in the range of 0.03–0.05 wt %. CNTs for the nanocomposites produced by preliminary dispersing of nanotubes in the epoxy resin, compared to those prepared by preliminary functionalization of the nanotubes in the amine hardener. This is attributed to the higher viscosity and stronger interfacial interactions of the amine hardener/CNT dispersion which restricts the reorganization of the nanotubes. The application of the EMF does not influence the pc value but the dc conductivity values (σdc) of the nanocomposites increased at about one order of magnitude due to the development of the aforementioned chain structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
The electrical properties and dispersion of vapor‐grown carbon nanofibers (VGCNF) and multiwalled carbon nanotubes (MWCNT)—epoxy resin composites are studied and compared. A blender was used to disperse the nanofillers within the matrix, producing samples with concentrations of 0.1, 0.5, and 1.0 wt % for both nanofillers, besides the neat sample. The dispersion of the nanofillers was qualitatively analyzed using scanning electron microscopy, transmission optical microscopy, and grayscale analysis. The electrical conductivity and the dielectric constant were evaluated. The percolation threshold of MWCNT epoxy composites is lower than 0.1 wt % while for VGCNF lies between 0.1 and 0.5 wt %. The difference on the dispersion ability of the two nanofillers is due to their intrinsic characteristics. Celzard's theory is suitable to calculate the percolation threshold bounds for the VGCNF composites but not for the MWCNT composites, indicating that intrinsic characteristics of the nanofillers beyond the aspect ratio are determinant for the MWCNT composites electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Fast and efficient determination of the optimal mechanical property of a polymer/CNT nanocomposite is crucial to develop polymer conductive nanocomposites. This work establishes a rheological approach to evaluate the super-toughness point of compatibilized high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites. Results illustrate that three types of HDPE/MWCNT nanocomposites exhibit obvious gel plateaus in the dynamic rheological curves and the gel points of nanocomposites with compatibilizer shift to the low MWCNTs loading. The super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers show the correspondence with the gel points acquired from the rheological data, indicating that dynamic rheology is an effective way to determine the super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers. Furthermore, unique network structure at the gel points is directly observed and the new mechanism of toughness is proposed. This study provides new insights for effective control of the structures and properties of polymer/CNT nanocomposites.  相似文献   

14.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   

15.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

16.
《印度化学会志》2021,98(10):100151
The objective of this work is to study the influence of additives of multi-walled carbon nanotubes (MWCNT) and silica nano-powder (SiO2) on the mechanical behavior of epoxy resin. Different volume fractions of MWCNT and SiO2were added. Mechanical characterization by tensile, three-point bending and Charpy tests were carried out. The experimental results show an increase in the mechanical performance of the mixtures (MWCNT ​+ ​epoxy), (SiO2 ​+ ​epoxy) up to 2% of additive. Beyond this value, a degradation of performance was observed. The addition of MWCNT gives better results when compared to the addition of SiO2. KIC-KCV correlations were made using empirical formulas to estimate the critical stress intensity factor KIC from the impact energy of the Charpy test.Unfortunately, this estimation does not provided a promising results, but other optimization methods were used to fit these empirical models to the behavior of our nanocomposites for which a good estimate was obtained after fitting these empirical models for SiO2.  相似文献   

17.
In order to improve the dispersibility and interface properties of multi-walled carbon nanotubes (MWCNTs) in epoxy resin (EP), aromatic hyperbranched polyesters with terminal carboxyl (HBP) and aromatic hyperbranched polyesters with terminal amino groups (HBPN) were used for noncovalent functionalization of MWCNTs. Epoxy composites reinforced by different types of MWCNT were prepared. The effects of noncovalent functionalization of MWCNTs on the dispersibility, wettability, interface properties and mechanical properties of epoxy composites were investigated. The results show that the dispersibility and wettability of MWCNTs are significantly improved after noncovalent functionalization. A large number of terminal primary amines (NH2) on noncovalently functionalized MWCNT with HBPN (HBPN-MWCNT) form covalent bonds with EP matrix, and thus the interfacial adhesion is enhanced significantly, resulting in high load transfer efficiency and substantial increase in mechanical properties. The interface with covalent bonding formed between the flexible hyperbranched polyester layer on the surface of HBPN-MWCNT and the EP matrix promotes plastic deformation of the surrounding EP matrix. The toughening mechanisms of HBPN-MWCNT are MWCNT pull-out and a large amount of plastic deformation of the surrounding EP matrix.  相似文献   

18.
In order to explore the role of multi-walled carbon nanotubes (MWCNTs) on the fracture behavior of epoxy-based nanocomposites, fracture tests were conducted under the combined out-of-plane shear and tensile loading. Epoxy resin LY-5052 together with MWCNT contents of 0.1, 0.5 and 1.0 wt% were used to produce nanocomposite specimens. The results showed that increasing the contribution of out-of-plane shear from pure mode I towards pure mode III enhanced fracture toughness for both pure epoxy and nanocomposites. Additionally, it was found that in both loading conditions of pure mode III and mixed mode I/III, increasing MWCNT content up to 1.0 wt% enhanced fracture toughness with an ascending trend. The mechanisms involved in the fracture behavior of polymer-based nanocomposites were also studied in detail using the photographs taken from the fracture surfaces by scanning electron microscopy.  相似文献   

19.
Polycarbonate/clay nanocomposites (PCNs) were prepared by melt intercalation using epoxy resin as a compatibilizer. The intercalated structure of PCNs was investigated using XRD and TEM. The linear and nonlinear dynamic rheological properties of PCNs were measured by the use of a parallel plate rheometer. The results reveal that the presence of epoxy influences rheological behavior of PCNs significantly. Addition of epoxy can improve dispersion of clay, enhancing the low-frequency viscoelastic responses; while high loadings of epoxy lead to a severe degradation of PC matrix, decreasing the high-frequency responses together with the plasticizing effect of excessive epoxy. Both of these two effects result in invalidity of time-temperature superposition. Moreover, all samples show high sensitivity to both the quiescent and large amplitude oscillatory shear (LAOS) deformation, despite enhanced percolation of tactoids due to the compatibilization of epoxy.  相似文献   

20.
Effect of quality parameters of starting raw materials, native carbon nanotubes (degree of defectiveness, thermal stability, morphology) on the properties of carboxylated and amidated nanotubes produced from these raw materials and on the homogeneity of a dispersion of amidated nanotubes in an epoxy oligomer was studied. The physicomechanical properties of epoxy nanocomposites produced from these dispersions were examined. It was found experimentally that an increase in the defectiveness of native nanotubes leads to a rise in the size of numerous aggregates in dispersions composed of an epoxy resin and amidated carbon nanotubes and, as a result, to deterioration of the physicomechanical characteristics of epoxy nanocomposites based on these dispersions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号