首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To increase the Tg in combination with a retained crystallization rate, bis(2‐hydroxyethyl)terephthalate (BHET) was incorporated into poly(butylene terephthalate) (PBT) via solid‐state copolymerization (SSP). The incorporated BHET fraction depends on the miscibility of BHET in the amorphous phase of PBT prior to SSP. DSC measurements showed that BHET is only partially miscible. During SSP, the miscible BHET fraction reacts via transesterification reactions with the mobile amorphous PBT segments. The immiscible BHET fraction reacts by self‐condensation, resulting in the formation of poly(ethylene terephthalate) (PET) homopolymer. 1H‐NMR sequence distribution analysis showed that self‐condensation of BHET proceeded faster than the transesterification with PBT. SAXS measurements showed an increase in the long period with increasing fraction BHET present in the mixtures used for SSP followed by a decrease due to the formation of small PET crystals. DSC confirmed the presence of separate PET crystals. Furthermore, the incorporation of BHET via SSP resulted in PBT‐PET copolymers with an increased Tg compared to PBT. However, these copolymers showed a poorer crystallization behavior. The modified copolymer chain segments are apparently fully miscible with the unmodified PBT chains in the molten state. Consequently, the crystal growth process is retarded resulting in a decreased crystallization rate and crystallinity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 882–899, 2007.  相似文献   

2.
This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate)(PET) fibers into useful products for the textile industry.PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst.The glycolysis product,bis(2-hydroxyethyl) terephthalate(BHET),was purified through repeated crystallization to get an average yield above 80%.Then,BHET was nitrated,reduced,and azotized to get diazonium salt.Finally,the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff.The structures of BHET and azo dyestuff were identified by FT1 R and ~1H NMR spectra and elemental analysis.Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color.The performances of the dyestuff were described with dye uptake,color fastness,K/S,L~*,a~*,b~*.and △E~* values.  相似文献   

3.
Sub- and supercritical glycolysis of polyethylene terephthalate (PET) with ethylene glycol (EG) to bis(2-hydroxyethyl) terephthalate (BHET) was investigated for the purpose of developing a PET recycling process. Supercritical glycolysis was carried out at 450 °C and 15.3 MPa while subcritical glycolysis was carried out at 350 °C and 2.49 MPa or at 300 °C and 1.1 MPa. High yields (gt; 90%) of the monomer BHET were obtained in both super- and subcritical cases. For the same PET/EG weight ratio of about 0.06, the optimum reaction time was 30 min for supercritical glycolysis and 75 and 120 min for two cases of subcritical glycolysis. GPC, RP-HPLC, 1H NMR and 13C NMR, and DSC were used to characterize the polymer and reaction products. Supercritical glycolysis will be suitable to a process requiring a high throughput due to its short reaction time.  相似文献   

4.
We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2‐hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

6.
Glycolysis of poly (ethylene terephthalate) bottle waste was carried out using microwave energy. A domestic microwave oven of 800 W was used with suitable modification for carrying out the reaction under reflux. The catalysts used for the depolymerization in ethylene glycol (EG) were zinc acetate and some simple laboratory chemicals such as sodium carbonate, sodium bicarbonate and barium hydroxide. Comparison of results was made from the point of view of the yield of bis (2-hydroxyethylene) terephthalate (BHET) and the time taken for depolymerization. It was observed that under identical conditions of catalyst concentration and PET:EG ratio, the yield of BHET was nearly same as that obtained earlier by conventional electric heating. However, the time taken for completion of reaction was reduced drastically from 8 h to 35 min. This has led to substantial saving in energy.  相似文献   

7.
This research discussed the effect of the addition of antimony catalyst on diethylene glycol (DEG) formation in poly(ethylene terephthalate) (PET) synthesis. It was found that antimony catalyst increased DEG formation in the preparation of PET, in particular, during the esterification stage and also during the prepolycondensation stage. To further discuss the effect of antimony catalyst on DEG formation in the preparation of PET, this research also focused on the kinetics of DEG formation during PET synthesis from purified bishydroxyethyl terephthalate (BHET) monomer with antimony catalyst. The rate expression of DEG formation from BHET monomer and antimony catalyst was described. It was found that the activation energy of BHET monomer with antimony catalyst in DEG formation is lower than that of BHET monomer without the addition of catalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1797–1803, 1999  相似文献   

8.
Poly(ethylene terephthalate) (PET) from an industrial manufacturer was depolymerized by ethylene glycol in the presence of a novel catalyst: ionic liquids. It was found that the purification process of the products in the glycolysis catalyzed by ionic liquids was simpler than that catalyzed by traditional compounds, such as metal acetate. Qualitative analysis showed that the main product in the glycolysis process was the bis(hydroxyethyl) terephthalate (BHET) monomer. Thermal analysis of the glycolysis products was carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and water content in the catalyst on the conversion of PET, selectivity of BHET, and distribution of the products were investigated. Results show that reaction temperature is a critical factor in this process. In addition, a detailed reaction mechanism of the glycolysis of PET was proposed.  相似文献   

9.
The methanolytic degradation of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units was investigated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) copolyesters (PETNT) containing 15 and 30 mol % nitrated units were prepared from ethylene glycol and a mixture of dimethyl terephthalate and dimethyl nitroterephthalate. A detailed study of the influence of the nitro group on the methanolytic degradation rate of the nitrated bis(2‐hydroxyethyl) nitroterephthalate (BHENT) model compound in comparison with the nonnitrated bis(2‐hydroxyethyl) terephthalate (BHET) model compound was carried out. The kinetics of the methanolysis of BHENT and BHET were evaluated with high‐performance liquid chromatography and 1H NMR spectroscopy. BHENT appeared to be much more reactive than BHET. The methanolytic degradation of PET and PETNT copolyesters at 80 °C was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the degradation increased with the content of nitrated units and occurred preferentially by cleavage of the ester groups placed at the meta position of the nitro group in the nitrated units. For both PET and PETNT copolyesters, an increase in crystallinity accompanied methanolysis. A surface degradation mechanism entailing solubilization of the fragmented polymer and consequent loss of mass was found to operate in the methanolysis of the copolyesters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2276–2285, 2002  相似文献   

10.
Poly(ethylene terephthalate) [PET] fibre wastes from an industrial manufacturer was depolymerised using excess ethylene glycol [EG] in the presence of metal acetate as a transesterification catalyst. The glycolysis reactions were carried out at the boiling point of ethylene glycol under nitrogen atmosphere up to 10 h. Influences of the reaction time, volume of EG, catalysts and their concentrations on the yield of the glycolysis products were investigated. The glycolysis products were analysed for hydroxyl and acid values and identified by different techniques, such as HPLC, 1H NMR and 13C NMR, mass spectra, and DSC. It was found that the glycolysis products consist mainly of bis(hydroxyethyl)terephthalate [BHET] monomer (>75%) which was effectively separated from dimer in quite pure crystalline form.  相似文献   

11.
The crystallization behavior of poly(ethylene terephthalate) (PET) with disodium terephthalate (DST) as nucleating agent was investigated. A detailed analysis of the crystallization course from the melt was made with the Avrami expression. The results demonstrated that DST additive can promote the PET crystallization rate in its entire crystallizable temperature range, and the acceleration degree of DST decreases with increasing temperature after a temperature higher than 180 °C. The values of the Avrami exponent indicated that the crystallization mode in Avrami theory is not suitable for the crystallization of these polymers, and the mechanism of the heterogeneous nucleation on PET crystallization is discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2135–2144, 2003  相似文献   

12.
Poly(butylene terephthalate)/poly(butylene terephthalate-e-caprolactone) is a new A/AxB1-x binary crystalline blend with intra-molecular repulsion interaction. Using the mean-field binary interaction model, the value of interaction parameter between the butylene terephthalate and caprolactone structural unit was first reported to be 0.305. This blend exhibited different crystallization behavior from a typical homopolymer/copolymer blend, which was carefully investigated by di?erential scanning calorimetry. It was found that poly(butylene terephthalate-e-caprolactone) copolymers have a great effect on the pure poly(butylene terephthalate) chain mobility and poly(butylene terephthalate) crystalline lattice packing. In the meantime, the crystallization of butylene terephthalate segments in copolymers was restricted by the previously formed poly(butylene terephthalate) crystallites. The two constituents for blending can not form a co-crystal in the range of composition even if they have the same butylene terephthalate unit. It can be concluded that longersegments in a copolymer would be beneficial for the formation of a co-crystal in blends.  相似文献   

13.
Zhang C  Xu L  Zhang H  Yang J  Du J  Liu Z 《Journal of chromatography. A》2004,1055(1-2):115-121
A method based on high-resolution size-exclusion chromatography (SEC) was established to analyze the solid products from the depolymerization of poly(trimethylene terephthalate) (PTT) in supercritical methanol. In the qualitative analysis, four factors (chromatographic retention time, qualitative multi-wavelength ultraviolet spectra, linear internal-insert SEC and qualitative IR spectra) were considered. The main solid products from the process were dimethyl terephthalate (DMT), methyl-(2-hydroxypropyl) terephthalate (MHPT), bis(2-hydroxypropyl) terephthalate (BHPT), methyl-(2-hydroxyethyl) terephthalate (MHET), bis(2-hydroxyethyl) terephthalate (BHET), and hydroxyethyl-(2-hydroxypropyl) terephthalate (HEHPT). It is found that the method is of a high resolution among the solid products and has a fine repeatability. In addition, the solid products from the de-polymerization of poly(ethylene terephthalate) (PET) in similar process were also analyzed by this method. Furthermore, the effects of supercritical conditions on the distribution of the products were also discussed.  相似文献   

14.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

15.
The kinetics of crystallization of poly(propylene terephthalate) (PPT) samples of different molecular weights were studied under both isothermal and nonisothermal conditions. The Avrami and Lauritzen–Hoffmann treatments were applied to evaluate kinetic parameters of PPT isothermal crystallization. It was found that crystallization is faster for low‐molecular‐weight samples. The modified Avrami equation, and the combined Avrami–Ozawa method were found to successfully describe the nonisothermal crystallization process. Also, the analysis of Lauritzen–Hoffmmann was tested and it resulted in values close to those obtained with isothermal crystallization data. The nonisothermal kinetic data were corrected for the effect of the temperature lag and shifted alone with the isothermal kinetic data to obtain a single master curve, according to the method of Chan and Isayev, testifying to the consistency between the isothermal and corrected nonisothermal data. A new method for ranking of polymers, referring to the crystallization rates, was also introduced. This involved a new index that combines the maximum crystallization rate observed during cooling with the average crystallization rates over the temperature range of the crystallization peak. Furthermore, the effective energy barrier of the dynamic process was evaluated with the isoconversional methods of Flynn and Friedmann. It was found that the energy barrier is lower for the low‐molecular‐weight PPT. The effect of the catalyst remnants on the crystallization kinetics was also investigated and it was found that this is significant only for low‐molecular‐weight samples. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3775–3796, 2004  相似文献   

16.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

17.
Poly(ethylene terephthalate) (PET) was synthesized by self-condensation of bis-(2-hydroxyethyl) terephthalate (BHET). Copolymerization of BHET with ethyl, bis-3,5-(2-hydroxyethoxy) benzoate (EBHEB) and ethyl, 3-(2-hydroxyethoxy) benzoate (E3HEB) yielded copolymers that contain varying amounts of branching and kinks, respectively. Copolymers of BHET with ethyl, 4-(2-hydroxyethoxy) benzoate (E4HEB), in which only the backbone symmetry is broken but without disruption of the linearity, were also prepared for comparison. The composition of the copolymers were established from their 1H-NMR spectra. The intrinsic viscosity of all the copolymers indicated that they were of reasonably high molecular weights. The thermal analysis of the copolymers using DSC showed that both the melting temperatures (Tm) and the percent crystallinity (as seen from the enthalpies of melting) (ΔHm) decreased with increasing comonomer (defect concentration) content, although their glass transition temperatures (Tg) were less affected. This effect was found to be most pronounced in the case of branching, while the effects of kinks and linear disruptions, on both Tm and ΔHm, were found to be similar. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 309–317, 1998  相似文献   

18.
聚对苯二甲酸1,3-丙二醇酯(PTT)是典型的半结晶聚合物,从熔体结晶形成球品,在某一结晶温度范围内,在球晶中可观察到环带结构,一般认为,环带球品的形成归因于片晶沿球晶径向的周期性扭曲,本文研究了PTT溶液浇铸薄膜在溶剂挥发过程中等温结晶的形态结构。  相似文献   

19.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

20.
Copolyesters with an alternating sequence of terephthalic acid and aliphatic dicarboxylic acids were prepared with three different methods. First, dicarboxylic acid dichlorides were reacted with bis(2‐hydroxyethyl)terephthalate (BHET) in refluxing 1,2‐dichlorobenzene. Second, the same monomers were polycondensed at 0–20 °C in the presence of pyridine. Third, dicarboxylic acid dichlorides and silylated BHET were polycondensed in bulk. Only this third method gave satisfactory molecular weights. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry revealed that the copolyesters prepared by the pyridine and silyl methods might have contained considerable fractions of cyclic oligoesters and polyesters despite the absence of transesterification and backbiting processes. The alternating sequences and thermal properties were characterized with 1H NMR spectroscopy and differential scanning calorimetry measurements, respectively. In agreement with the alternating sequence, all copolyesters proved to be crystalline, but the crystallization was extremely slow [slower than that of poly(ethylene terephthalate)]. A second series of alternating copolyesters was prepared by the polycondensation of silylated bis(4‐hydroxybut‐ yl)terephthalate with various aliphatic dicarboxylic acid dichlorides. The resulting copolyesters showed significantly higher rates of crystallization, and the melting temperatures were higher than those of the BHET‐based copolyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3371–3382, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号