首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
The controlled hydrolysis of metal alkoxides in the presence of methacrylic acid results in metal oxide clusters capped by polymerizable methacrylate ligands. Radical polymerization of small portions of such clusters with organic co-monomers allows the preparation of an interesting new type of inorganic-organic hybrid polymers in which the metal oxo clusters efficiently crosslink the organic polymers chains. SAXS investigations revealed that the clusters may aggregate to form clusters of clusters. The properties of the hybrid materials, such as thermal stability, swelling, dielectric and mechanical properties, depend not only on the portion of incorporated cluster, i.e. the crosslinking density, but also on the kind of employed cluster.  相似文献   

2.
基于多面低聚倍半硅氧烷(POSS)的杂化聚合物是近年发展起来的一类新型有机/无机杂化材料,性能独特,应用前景广阔。本文综述了含POSS新型杂化聚合物的合成研究进展,涉及自由基溶液聚合、可控活性聚合、开环易位聚合、缩聚和配位聚合。  相似文献   

3.
In this article, the poly(methyl methacrylate)/montmorillonite (PMMA/MMT) organic-inorganic hybrid materials were prepared by conventional free radical polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization, respectively. The kinetics comparison of these two polymerizations was studied. The PMMA/MMT hybrid materials were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). According to these results, we knew that the polymerization behavior of MMA showed controlled/living radical polymerization (CLRP) characteristics under the control of RAFT agent. The incorporation of RAFT agent and MMT nanoparticles improved the thermal properties of polymers, and the thermal stability of polymers increased with increasing content of MMT nanoparticles. The structures and morphologies of PMMA/MMT hybrid materials were characterized by FT-IR, XRD and TEM. These results showed that the MMA monomer can be initiated and propagated in the clay layers of MMT via the control of RAFT agent, and then the exfoliated structure was obtained for the hybrid materials.  相似文献   

4.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The introduction of supramolecular interactions in synthetic polymers seems to be a promising approach towards novel 'smart' materials that combine both the (reversible) supramolecular interactions and the properties of the polymers. In this tutorial review, the use of (metallo-)supramolecular initiators for the preparation of end-functionalized (metallo-)supramolecular polymers will be discussed in detail. The different polymerization techniques that have been applied as well as the different ligands and metal complexes that were used to initiate these polymerizations will be discussed together with the resulting polymer properties.  相似文献   

6.
Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization(RDRP), emphasizing reverse addition-fragmentation chain transfer(RAFT) polymerization, and nitroxide mediated polymerization(NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug.Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.  相似文献   

7.
采用2,2,6,6-四甲基-1-哌啶氧化物(TEMPO)的溴盐对化学共沉淀法制备的Fe3O4纳米粒子进行表面修饰,以该粒子为过氧引发剂,苯乙烯(St)、马来酸酐(MA)为单体,采用"活性"/可控自由基聚合技术在粒子表面原位引发聚合,制备了聚(苯乙烯-马来酸酐)/Fe3O4纳米杂化材料,并对纳米Fe3O4及杂化材料进行了FT-IR、XRD、TGA、TEM和GPC表征。结果表明,所制备的纳米杂化材料的平均粒径约为70 nm,磁性粒子表面的聚合物分子链随着聚合时间的增长而增长。振动样品磁强计测试结果显示,在室温、外加磁场下,该纳米杂化材料呈现超顺磁性,饱和磁化强度随着包覆聚合物量的增加而降低。  相似文献   

8.
Conducting polymer based hybrid materials were synthesized by a new route. The use of pyrrole derivatives functionalized by a carboxylic acid or a -diketone group allows to control the polymerization rate of zirconium tetrapropoxide (Zr(OPr)4). The organic species entrapped in the resulting hybrid materials yield conducting polymers by electropolymerization. The results show that the formation of the conducting polymers depends on the nature of the monomer. Moreover, the presence of polysiloxane chains within the hybrid materials improves the properties of the latter.  相似文献   

9.
Hybridization of metal–organic frameworks (MOFs) and polymers into composites yields materials that display the exceptional properties of MOFs with the robustness of polymers. However, the realization of MOF–polymer composites requires efficient dispersion and interactions of MOF particles with polymer matrices, which remains a significant challenge. Herein, we report a simple, scalable, bench‐top approach to covalently tethered nylon–MOF polymer composite materials through an interfacial polymerization technique. The copolymerization of a modified UiO‐66‐NH2 MOF with a growing polyamide fiber (PA‐66) during an interfacial polymerization gave hybrid materials with up to around 29 weight percent MOF. The covalent hybrid material demonstrated nearly an order of magnitude higher catalytic activity for the breakdown of a chemical warfare simulant (dimethyl‐4‐nitrophenyl phosphate, DMNP) compared to MOFs that are non‐covalently, physically entrapped in nylon, thus highlighting the importance of MOF–polymer hybridization.  相似文献   

10.
Main-chain organometallic polymers utilize transition metal-organic ligand complexes as primary components of their backbones. These hybrid materials effectively integrate the physical and electronic properties of organic polymers with the physical, electronic, optical, and catalytic properties of organometallic complexes. Combined with the rich and continuously growing array of ligands for transition metals, these materials have outstanding potential for use in a broad range of applications. This tutorial review discusses the major classes of main-chain organometallic polymers, including coordination polymers, poly(metal acetylide)s, and poly(metallocene)s. Emphasis is placed on their synthesis, characterization, physical properties, and applications, as well as ongoing challenges and limitations. These discussions are supplemented with highlights from the recent literature. The review concludes with perspectives on the current status of the field, as well as opportunities that lie just beyond its frontier.  相似文献   

11.
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009  相似文献   

12.
π-Conjugated polymers(CPs)represent one of the quite important and rapidly growing branches of flexible electrochromic materials.Electrosynthesized hybrid CPs employing dibenzo pentacycles(fluorenes,carbazoles,dibenzothiophenes,and dibenzofuran)as the backbones have received considerable attention owing to their special structures and interesting electrochromic performances.Recent studies show that polymers from these structures exhibit decent contrast ratios,favorable coloration efficiencies,low switching voltages,fast response time,excellent stability,and color persistence.Intrinsically,their electrochromic properties significantly depend on fine-tailoring of precursor monomer structures,and polymerization techniques and conditions.This review devotes to showing a clear picture of the research progress of dibenzo pentacycle-centered CPs via electrochemical polymerization,including fluorenes,carbazoles,dibenzothiophenes,and dibenzofuran-based hybrid electrochromic polymers.Critical influences of the tailored precursor structures on their electropolymerization and resultant polymer performances are highlighted,aiming at providing an insight for the development of novel fused ring-based polymer electrochromic materials.  相似文献   

13.
Coordination polymers and organic–inorganic hybrid materials represent an area of very active research. Halide-bridged polymers of divalent transition or post-transition metals coordinated to donor ligands are reviewed. The article is organized according to structural features of the compounds: the main sections of chain polymers, crosslinked systems and networks of high metal-halide content are subdivided according to connectivity aspects. Structural trends are highlighted and the correlation between chemical composition and topology on the one hand and derived properties and dynamics on the other hand is discussed.  相似文献   

14.
将一种可有机功能化的Wells-Dawson POM与降冰片烯相连接,制备了多金属氧簇降冰片烯单体.再利用活性可控的开环易位聚合方法(ROMP),在Grubbs 3~(rd)催化剂的作用下,合成了聚(多金属氧簇降冰片烯)-聚(己酸降冰片烯)的杂化嵌段和无规共聚物(H-CPs),分别简写为Poly(POM)_m-b-Poly(COOH)_n和Poly(POM)_m-r-Poly(COOH)_n.采用~1H-NMR、~(31)P-NMR和FTIR等方法对共聚物结构进行表征,确认我们成功地合成了由共价键连接这2种单体形成的H-CPs.最后,利用带有光散射和红外探测器的凝胶渗透色谱(SEC)测定聚合物的绝对分子量和分子量分布,证明所得到的H-CPs不仅分子量可控,而且分子量分布系数较窄.最后,研究了H-CPs催化氧化四氢噻吩(THT)成环丁亚砜(THTO)反应,结果表明,相比于聚(多金属氧簇)的均聚物(Poly(POM)),H-CPs的催化活性有所下降,原因是POM催化剂含量较低以及H-CPs在催化介质中溶解性的差异.  相似文献   

15.
Oxo-metallic clusters are employed as inorganic nanobuilding blocks in order to obtain new organic–inorganic hybrid materials. Nanobuilding blocks are well-defined preformed entities which allow a better control of the inorganic domains for the elaboration of hybrid compounds. The oxo-alcoxo cluster Ti16O16(OEt)32 presents a shell of labile ethoxy groups which can be selectively exchanged with the preservation of the oxo-core in order to introduce polymerizable ligands at the surface of this nanobrick. Three different new clusters, Ti16O16(OEt)32−x(OPhCHCH2)x, have been synthesised, each cluster bears exactly 4, 8 and 16 styrenic groups. These functional clusters were copolymerized with styrene leading to three dimensional networks where the inorganic nano-fillers are covalently linked to the organic polymer. Thus new hybrid materials can be obtained and these nanobricks are good models to correlate the structure of hybrid materials and their physical properties especially their mechanical and thermal properties. The structure of the materials in function of the organic–inorganic ratio and in function of the cluster functionalities was investigated by SAXS, and the formation of the different levels of aggregation is reported.  相似文献   

16.
The creation of a porous magnet is a long-sought academic goal since magnetism and porosity are hostile to one another. While long-range magnetic ordering needs spin carriers of short separation through short bridges, porosity relies on the use of extended connecting ligands. Here, we will give a survey of the cluster-based magnetic porous coordination polymers, i.e., 0-D MPCPs, according to their functional subunits: (1) nanoporous spin crossover materials with single metal nodes; (2) metal-radical approach with rigid organic radical ligands and single metal nodes; (C) PCPs with rigid organic ligands and metal oligomer nodes; (D) PCPs with metal complex linkers and polymetal cluster nodes; (E) PCPs with organo-polymetal cluster linkers and single metal nodes. The assembly from clusters can provide a reasonable route to resolve the hostility between magnetism and porosity. This assembly’s merits are obvious: the pore benefits from the big cluster according to "Scale Chemistry", and the functional framework inherits interesting physical properties from the clusters with a large ground spin S.  相似文献   

17.
含倍半硅氧烷的杂化聚合物   总被引:25,自引:0,他引:25  
从杂化材料的形成方式 ,说明含倍半硅氧烷类杂化材料是基于化学键合作用形成的分子内杂化体系 ,是一类新型高性能的有机_无机杂化材料。介绍了倍半硅氧烷的结构、合成方法及性能特点 ,重点阐述了多面齐聚倍半硅氧烷类杂化聚合物的性能特点及其发展趋势。  相似文献   

18.
Organic-inorganic hybrid materials with excellent heavy metal ions chelating properties were synthesized by covalent bonding of multifunctional polymers of polyamidoamine (PAA) type onto silica. Two series of polyamidoamine-silica hybrid materials differing in the PAA chemical structure were prepared and their thermal properties were investigated. Differential Scanning Calorimetry was used to study the effects of chain immobilization and ion chelation on the glass-transition temperature (Tg) of the polymers. The Tg of PAA-hybrid materials was elevated with respect to ungrafted PAAs. Complex formation with metal ions such as Cu++ or Co++ caused total suppression of Tg for both linear polymers as well as the corresponding hybrid materials. Finally, the silica particles slightly influenced the decomposition temperatures of linear polymers increasing their thermal stability.  相似文献   

19.
Amphiphilic polymers having different polymerizable functional groups were synthesised and investigated as coatings for semiconductor nanoparticles (Quantum Dots, QDs). QDs coated with hydrophobic ligands were successfully transferred into water using these polymers and the assemblies were co-polymerized with N-isopropylacrylamide (NIPAM) by a precipitation polymerization method. In the resulting hybrid microspheres, QDs were uniformly distributed within the PNIPAM matrix. The influence of different polymerizable groups and counter ions of the amphiphilic polymer on the copolymerization process were investigated.  相似文献   

20.
Cage silsesquioxanes, also known as polyhedral oligomeric silsesquioxanes (POSS), serve as crucial building blocks in crafting precisely designed organic–inorganic hybrid materials, given that their well-defined silsesquioxane clusters can be adorned with organic substituents. While polymers with POSS in their main chains have been thoroughly examined, analyzing the correlation between cage structure and material properties in main-chain-type polymers remains challenging. This difficulty stems from the limited range of organic substituents on traditional POSS monomers, thereby precluding comparisons between polymers with unified substituents and different cage structures. In this study, we synthesized double-decker silsesquioxane (DDSQ) and side-opened POSS (SO-POSS) monomers, both featuring phenyl groups. Subsequent platinum-catalyzed hydrosilylation polymerization yielded main-chain-polymers. Both the cage and linker structures influence thermal stability and the glass transition temperature, while the hardness was primarily determined by the linker structure. This research is the first to elucidate the impact of cage structure on the material properties of main-chain-type POSS polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号