首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Finite Element Exterior Calculus (FEEC) was developed by Arnold, Falk, Winther and others over the last decade to exploit the observation that mixed variational problems can be posed on a Hilbert complex, and Galerkin-type mixed methods can then be obtained by solving finite-dimensional subcomplex problems. Chen, Holst, and Xu (Math. Comp. 78 (2009) 35-53) established convergence and optimality of an adaptive mixed finite element method using Raviart-Thomas or Brezzi-Douglas-Marini elements for Poisson's equation on contractible domains in $\mathbb{R}^2$, which can be viewed as a boundary problem on the de Rham complex. Recently Demlow and Hirani (Found. Math. Comput. 14 (2014) 1337-1371) developed fundamental tools for a posteriori analysis on the de Rham complex. In this paper, we use tools in FEEC to construct convergence and complexity results on domains with general topology and spatial dimension. In particular, we construct a reliable and efficient error estimator and a sharper quasi-orthogonality result using a novel technique. Without marking for data oscillation, our adaptive method is a contraction with respect to a total error incorporating the error estimator and data oscillation.  相似文献   

2.
We introduce an adaptive finite element method for computing electromagnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given frequency based on the inverse iteration method. The problem is formulated as a generalized eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue problem, we design a new adaptive inverse iteration finite element algorithm. Adaptive finite element methods based on a posteriori error estimate are known to be successful in resolving singularities of eigenfunctions which deteriorate the finite element convergence. We construct a posteriori error estimator for the electromagnetic guided waves problem. Numerical results are reported to illustrate the quasi-optimal performance of our adaptive inverse iteration finite element method.  相似文献   

3.
We consider an Adaptive Edge Finite Element Method (AEFEM) for the 3D eddy currents equations with variable coefficients using a residual-type a posteriori error estimator. Both the components of the estimator and certain oscillation terms, due to the occurrence of the variable coefficients, have to be controlled properly within the adaptive loop which is taken care of by appropriate bulk criteria. Convergence of the AEFEM in terms of reductions of the energy norm of the discretization error and of the oscillations is shown. Numerical results are given to illustrate the performance of the AEFEM.  相似文献   

4.
In this work, we treat the convergence of adaptive lowest-order FEM for some elliptic obstacle problem with affine obstacle. For error estimation, we use a residual error estimator from [D. Braess, C. Carstensen, and R. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math. 107 (2007), pp. 455–471]. We extend recent ideas from [J. Cascon, C. Kreuzer, R. Nochetto, and K. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), pp. 2524–2550] for the unrestricted variational problem to overcome the lack of Galerkin orthogonality. The main result states that an appropriately weighted sum of energy error, edge residuals and data oscillations satisfies a contraction property within each step of the adaptive feedback loop. This result is superior to a prior result from Braess et al. (2007) in two ways: first, it is unnecessary to control the decay of the data oscillations explicitly; second, our analysis avoids the use of some discrete local efficiency estimate so that the local mesh-refinement is fairly arbitrary.  相似文献   

5.
A posteriori error estimators and adaptive mesh-refinement have themselves proven to be important tools for scientific computing. For error control in finite element methods (FEM), there is a broad variety of a posteriori error estimators available, and convergence as well as optimality of adaptive FEM is well-studied in the literature. This is, however, in sharp contrast to the boundary element method (BEM) and to the coupling of FEM and BEM. In our contribution, we present an easy-to-implement error estimator for some FEM-BEM coupling which, to the best of our knowledge, has not been proposed in the literature before. The derived mesh-refining algorithm provides the first adaptive coupling procedure which is mathematically proven to converge. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to efficient algorithms for the estimation problem use adaptive multi-meshes in developing We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.  相似文献   

7.
State of the art simulations in computational mechanics aim reliability and efficiency via adaptive finite element methods (AFEMs) with a posteriori error control. The a priori convergence of finite element methods is justified by the density property of the sequence of finite element spaces which essentially assumes a quasi‐uniform mesh‐refining. The advantage is guaranteed convergence for a large class of data and solutions; the disadvantage is a global mesh refinement everywhere accompanied by large computational costs. AFEMs automatically refine exclusively wherever the refinement indication suggests to do so and so violate the density property on purpose. Then, the a priori convergence of AFEMs is not guaranteed automatically and, in fact, crucially depends on algorithmic details. The advantage of AFEMs is a more effective mesh accompanied by smaller computational costs in many practical examples; the disadvantage is that the desirable error reduction property is not always guaranteed a priori. Efficient error estimators can justify a numerical approximation a posteriori and so achieve reliability. But it is not clear from the start that the adaptive mesh‐refinement will generate an accurate solution at all. This paper discusses particular versions of an AFEMs and their analyses for error reduction, energy reduction, and convergence results for linear and nonlinear problems. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Mixed finite elements over a plane convex quadrilateral are obtained by assembling two Raviart-Thomas mixed finite elements over triangles. The macroelement is given by an eliminating procedure of the degrees of freedom related to the common edge to the two triangles. This procedure results in a finite element with a space of interpolating functions containing the polynomials of degree ? l, where l is the greater integer for which the same property is satisfied by the relevant Raviart-Thomas [Mathematical Aspects of Finite Element Methods, Roma 1975, I. Galligani and E. Magenes, Eds., Lecture Notes in Mathematics Vol. 606, Springer-Verlag, Berlin, 1975] mixed finite element. The interpolation error is estimated by means of the technique of almost equivalent affine element as given by Ciavaldini and Nédélec [Rev. Fr. Autom. Inf. Recher. Opérationnelle Ser. Rouge R2 , 29–45 (1974)]. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Andreas Schröder 《PAMM》2008,8(1):10053-10056
In this work, we combine an hp–adaptive strategy with a posteriori error estimates for variational inequalities, which are given by contact problems. The a posteriori error estimates are obtained using a general approach based on the saddle point formulation of contact problems and making use of a yposteriori error estimates for variational equations. Error estimates are presented for obstacle problems and Signorini problems with friction. Numerical experiments confirm the reliability of the error estimates for finite elements of higher order. The use of the hp–adaptive strategy leads to meshes with the same characteristics as geometric meshes and to exponential convergence. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this article, we study adaptive stabilized mixed finite volume methods for the incompressible flows approximated using the lower order elements. A residual type of a posteriori error estimator is designed and studied with the derivation of upper and lower bounds between the exact solution and the finite volume solution. A discrete local lower bound between two successive finite volume solutions is also obtained. Also, convergence of the adaptive stabilized mixed finite volume methods is established. The presented methods have three prominent features. First, it is of practical convenience in real applications with the same partitions for velocity and pressure. Second, less computational time is required by easily applying both the lower order elements and the local grid refinement necessary for the elements of interest. Third, compared with the standard finite element method, its analysis of H1‐norm and L2‐norm for the velocity and pressure are usually derived without any high order regularity conditions on the exact solution. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1424–1443, 2015  相似文献   

11.
Andreas Schröder 《PAMM》2011,11(1):7-10
This paper presents mixed finite element methods of higher-order for an idealized frictional contact problem in linear elasticity. The approach relies on a saddle point formulation where the frictional contact condition is captured by a Lagrange multiplier. The convergence of the mixed scheme is proven and some a priori estimates for the h- and p-method are derived. Furthermore, a posteriori error estimates are presented which rely on the estimation of the discretization error of an auxiliary problem and some further terms capturing the error in the friction and complementary conditions. Numerical results confirm the applicability of the a posteriori error estimates within h- and hp-adaptive schemes. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H 1 stability of the L 2 projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P 1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves (Mao et al. in Adv Comput Math 25(1–3):135–160, 2006). The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L 2 error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.  相似文献   

13.
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31–53, 2015  相似文献   

14.
Summary. The finite element method is a reasonable and frequently utilised tool for the spatial discretization within one time-step in an elastoplastic evolution problem. In this paper, we analyse the finite element discretization and prove a priori and a posteriori error estimates for variational inequalities corresponding to the primal formulation of (Hencky) plasticity. The finite element method of lowest order consists in minimising a convex function on a subspace of continuous piecewise linear resp. piecewise constant trial functions. An a priori error estimate is established for the fully-discrete method which shows linear convergence as the mesh-size tends to zero, provided the exact displacement field u is smooth. Near the boundary of the plastic domain, which is unknown a priori, it is most likely that u is non-smooth. In this situation, automatic mesh-refinement strategies are believed to improve the quality of the finite element approximation. We suggest such an adaptive algorithm on the basis of a computable a posteriori error estimate. This estimate is reliable and efficient in the sense that the quotient of the error by the estimate and its inverse are bounded from above. The constants depend on the hardening involved and become larger for decreasing hardening. Received May 7, 1997 / Revised version received August 31, 1998  相似文献   

15.
Recently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251–266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix–Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings.  相似文献   

16.
Lin  Xiuxiu  Chen  Yanping  Huang  Yunqing 《Numerical Algorithms》2020,83(3):1145-1169

In this paper, we investigate a distributed optimal control problem governed by elliptic partial differential equations with L2-norm constraint on the state variable. Firstly, the control problem is approximated by hp spectral element methods, which combines the advantages of the finite element methods with spectral methods; then, the optimality conditions of continuous system and discrete system are presented, respectively. Next, hp a posteriori error estimates are derived for the coupled state and control approximation. In the end, a projection gradient iterative algorithm is given, which solves the optimal control problems efficiently. Numerical experiments are carried out to confirm that the numerical results are in good agreement with the theoretical results.

  相似文献   

17.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

18.
A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. For hypersingular integral equations in 2D with a positive-order Sobolev space, we analyse the mathematical relation between the (h???h/2)-error estimator from [S. Ferraz-Leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008), pp. 135–162], the two-level error estimator from [M. Maischak, P. Mund, and E. Stephan, Adaptive multilevel BEM for acoustic scattering, 585 Comput. Methods Appl. Mech. Eng. 150 (1997), pp. 351–367], and the averaging error estimator from [C. Carstensen and D. Praetorius, Averaging techniques for the a posteriori bem error control for a hypersingular integral equation in two dimensions, SIAM J. Sci. Comput. 29 (2007), pp. 782–810]. All of these a posteriori error estimators are simple in the following sense: first, the numerical analysis can be done within the same mathematical framework, namely localization techniques for the energy norm. Second, there is almost no implementational overhead for the realization.  相似文献   

19.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

20.
An efficient and reliable a posteriori error estimate is derived for solving three-dimensional static Maxwell's equations by using the edge elements of first family. Based on the a posteriori error estimates, an adaptive finite element method is constructed and its convergence is established. Compared with the existing results, an important advantage of the new theory lies in its feature that the usual marking of elements based on the oscillation is not needed in our adaptive algorithm, while the linear convergence of the algorithm can be still demonstrated in terms of the reduction of the energy-norm error and the oscillation. Numerical examples are provided which demonstrate the effectiveness and robustness of the adaptive methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号