首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Following the optimization approach to brittle fracture, we consider the evolution of a crack in a domain as solution of the global problem of constrained minimization of the total potential energy with respect to both state variables (the displacement vector) and shape variables (parameters of the crack shape). This formulation describes the initiation of a crack in a homogeneous body and its stable as well as unstable propagation, which allows also a kink (topology change) of the crack during the evolution process. By this we assume that contact can occurs between the opposite crack faces. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Our goal is to design brittle composite materials yielding maximal energy dissipation for a given static load case. We focus on the effect of variation of fiber shapes on resulting crack paths and thus on the fracture energy. To this end, we formulate a shape optimization problem, in which the cost function is the fracture energy and the state problem consists in the determination of the potentially discontinuous displacement field in the two-dimensional domain. Thereby, the behavior at the crack surfaces is modeled by cohesive laws. We impose a nonpenetration condition to avoid interpenetration of opposite crack sides. Accordingly, the state problem is formulated as variational inequality. This leads to potential nondifferentiability of the shape-state mapping. For the numerical solution, we derive first-order information in the form of subgradients. We conclude the article by numerical results.  相似文献   

3.
C. Kuhn  R. Müller 《PAMM》2008,8(1):10223-10224
The variational formulation of brittle fracture as formulated for example by Francfort and Marigo in [1], where the total energy is minimized with respect to any admissible crack set and displacement field, allows the identification of crack paths, branching of preexisting cracks and even crack initiation without additional criteria. For its numerical treatment a continuous approximation of the model in the sense of Γ-convergence has been presented by Bourdin in [2]. In the regularized Francfort–Marigo model cracks are represented by an additional field variable (secondary variable) s∈[0,1] which is 0 if the material is cracked and 1 if it is undamaged. In this work, we reinterpret the crack variable as a phase field order parameter and address cracking as a phase transition problem. The crack growth is governed by the evolution equation of the order parameter which resembles the Ginzburg–Landau equation. The numerical treatment is done by finite elements combined with an implicit Euler scheme for the time integration. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Using a self-similar variables, an asymptotic investigation is carried out into the stress fields and the rates of creep deformations and degree of damage close to the tip of a tensile crack under creep conditions in a coupled (creep - damage) plane formulation of the problem. It is shown that a domain of completely damaged material (DCDM) exists close to the crack tip. The geometry of this domain is determined for different values of the material parameters appearing in the constitutive relations of the Norton power law in the theory of steady-state creep and a kinetic equation which postulates a power law for the damage accumulation. It is shown that, if the boundary condition at the point at infinity is formulated as the condition of asymptotic approximation to the Hutchinson–Rice-Rosengren solution [Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968;16(1):13–31; Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids. 1968;16(1):1–12], then the boundaries of the DCDM, which are defined by means of binomial and trinomial expansions of the continuity parameter, are substantially different with respect to their dimension and shape. A new asymptotic of the for stress field, which determines the geometry of the DCDM and leads to close configurations of the DCDM constructed using binomial and trinomial asymptotic expansions of the continuity parameter, are established by an asymptotic analysis and a numerical solution of the non-linear eigenvalue problem obtained.  相似文献   

5.
The present contribution focuses on fracture caused by indentation loading on the surface of a brittle solid. Its theoretical prediction is a challenging task due to the fact that crack nucleation is not geometrically induced, but is caused by the stress concentration in the contact near-field. The application of the phase field model requires constitutive assumptions to ensure a tension-compression asymmetric material response and prevent damage in compressed regions. This is achieved at the cost of giving up the variational concept of brittle fracture. We simulate the indentation of a cylindrical flat-ended punch on brittle materials like silicate glass. In order to reduce the numerical effort, we exploit axisymmetric conditions for the finite element formulation. After crack initiation stable propagation of a cone crack can be observed in good agreement with experiments. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We consider the two‐dimensional elasticity problem for an elastic body with a crack under unilateral constraints imposed at the crack. We assume that both the Signorini condition for non‐penetration of the crack faces and the condition of given friction between them are fulfilled. The problem is non‐linear and can be described by a variational inequality. Varying the shape of the crack by a local coordinate transformation of the domain, the first derivative of the energy functional to the problem with respect to the crack length is obtained, which gives the criterion for the crack growing. The regularity of the solution is discussed and the singular solution is performed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
In the paper we consider elliptic boundary problems in domains having cuts (cracks). The non-penetration condition of inequality type is prescribed at the crack faces. A dependence of the derivative of the energy functional with respect to variations of crack shape is investigated. This shape derivative can be associated with the crack propagation criterion in the elasticity theory. We analyze an optimization problem of finding the crack shape which provides a minimum of the energy functional derivative with respect to a perturbation parameter and prove a solution existence to this problem.  相似文献   

8.
The phase field modeling of brittle fracture was a topic of intense research in the last few years and is now well-established. We refer to the work [1-3], where a thermodynamically consistent framework was developed. The main advantage is that the phase-field-type diffusive crack approach is a smooth continuum formulation which avoids the modeling of discontinuities and can be implemented in a straightforward manner by multi-field finite element methods. Therefore complex crack patterns including branching can be resolved easily. In this paper, we extend the recently outlined phase field model of brittle crack propagation [1-3] towards the analysis of ductile fracture in elastic-plastic solids. In particular, we propose a formulation that is able to predict the brittle-to-ductile failure mode transition under dynamic loading that was first observed in experiments by Kalthoff and Winkler [4]. To this end, we outline a new thermodynamically consistent framework for phase field models of crack propagation in ductile elastic-plastic solids under dynamic loading, develop an incremental variational principle and consider its robust numerical implementation by a multi-field finite element method. The performance of the proposed phase field formulation of fracture is demonstrated by means of the numerical simulation of the classical Kalthoff-Winkler experiment that shows the dynamic failure mode transition. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
An efficient integral equation formulation for two-dimensional crack problems is proposed with the displacement equation being used on the outer boundary and the traction equation being used on one of the crack faces. Discontinuous quarter point elements are used to correctly model the displacement in the vicinity of crack tips. Using this formulation a general crack problem can be solved in a single-region formulation, and only one of the crack faces needs to be discretised. Once the relative displacements of the cracks are solved numerically, physical quantities of interest, such as crack tip stress intensity factors can be easily obtained. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.  相似文献   

10.
11.
The discretization by various mixed finite element methods of a new variational formulation of crack problems is considered. The new formulation, called the smooth domain method, is derived for crack problems in the case of a simplified model of an elastic membrane. Inequality type boundary conditions are prescribed at the crack faces. The resulting model takes the form of an unilateral contact problem on the crack. The mathematical analysis for the method leads to optimal convergence rates, as given in this Note. To cite this article: Z. Belhachmi et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

12.
We consider the problem of equilibrium of a two-layer elastic body. The first of the layers contains a crack,while the second is a circle centered at one of the crack tips. The round layer is glued by its boundary to the first layer. The unique solvability is proved for this problem in the nonlinear formulation. An optimal control problem is also considered. The radius a of the second layer is chosen as a varying parameter under assumption that a takes positive values from a closed interval. It is shown that there are a value of a minimizing the functional that characterizes how potential energy depends on the crack length and a value of a minimizing the functional that characterizes the opening of the crack.  相似文献   

13.
P. Dumstorff  G. Meschke 《PAMM》2003,2(1):226-227
In this paper a finite element model for the analysis of brittle materials in the post cracking regime is presented. The model allows the representation of failure zones several times smaller than the structure itself using relatively coarse finite element meshes. The formulation is based on the partition of unity method. Discontinuous shape functions are used to enrich the continuous approximation of the displacement field where a crack has opened [2]. The magnitude of the displacement jump is determined by extra degrees of freedom at existing nodes. The crack path is completely independent of the structure of the mesh and is continuous across element boundaries. To model inelastic deformations around the crack tip a cohesive crack model is used. A representative numerical example illustrates the performance of the proposed model.  相似文献   

14.
A ring star in a graph is a subgraph that can be decomposed into a cycle (or ring) and a set of edges with exactly one vertex in the cycle. In the minimum ring-star problem (mrsp) the cost of a ring star is given by the sum of the costs of its edges, which vary, depending on whether the edge is part of the ring or not. The goal is to find a ring-star spanning subgraph minimizing the sum of all ring and assignment costs. In this paper we show that the mrsp can be reduced to a minimum (constrained) Steiner arborescence problem on a layered graph. This reduction is used to introduce a new integer programming formulation for the mrsp. We prove that the dual bound generated by the linear relaxation of this formulation always dominates the one provided by an early model from the literature. Based on our new formulation, we developed a branch-and-cut algorithm for the mrsp. On the primal side, we devised a grasp heuristic to generate good upper bounds for the problem. Computational tests with these algorithms were conducted on a benchmark of public domain. In these experiments both our exact and heuristics algorithms had excellent performances, noticeably in dealing with instances whose optimal solution has few vertices in the ring. In addition, we also investigate the minimum spanning caterpillar problem (mscp) which has the same input as the mrsp and admits feasible solutions that can be viewed as ring stars with paths in the place of rings. We present an easy reduction of the mscp to the mrsp, which makes it possible to solve to optimality instances of the former problem too. Experiments carried out with the mscp revealed that our branch-and-cut algorithm is capable to solve to optimality instances with up to 200 vertices in reasonable time.  相似文献   

15.
The article presents a general approach to modeling the transport of extensive quantities in the case of flow of multiple multicomponent fluid phases in a deformable porous medium domain under nonisothermal conditions. The models are written in a modified Eulerian–Lagrangian formulation. In this modified formulation, the material derivatives are written in terms of modified velocities. These are the velocities at which the various phase and component variables propagate in the domain, along their respective characteristic curves. It is shown that these velocities depend on the heterogeneity of various solid matrix and fluid properties. The advantage of this formulation, with respect to the usually employed Eulerian one, is that numerical dispersion, associated with the advective fluxes of extensive quantities, are eliminated. The methodology presented in the article shows how the Eulerian–Lagrangian formulation is written in terms of the relatively small number of primary variables of a transport problem. © 1997 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 13: 505–530, 1997  相似文献   

16.
S. Hédan  V. Valle  M. Cottron  F. Brémand 《PAMM》2007,7(1):3050007-3050008
The fundamental aim of this study is the determination zone of the 3D effects and the transient one at the vicinity of the crack tip during a crack propagation in brittle materials ( PMMA ) using an optical method (Michelson interferometer). With the obtained interferograms, we can extract the phase (thus the relief) by using a new numerical approach based on the principle of images correlation between real fringes and virtual fringes. Different dynamic tests are realized by a plate loaded in mode I under a constant loading. We compare the obtained data with the two-dimensional theory of Westergaard (plane stress hypothesis) [1]. With the divergence is established, we propose a new 3D formulation, based on a formulation employed for static crack, which takes into account 3D and transient effects. For the static cracks, the 3D effects relate to a presence of the state of three-dimensional stresses. However in dynamics, the transient effects appear and are related to the crack propagation velocity. The 3D effects and transient effects lead to results equivalent to experimental ones in terms of displacement but are completely different to results given by the two-dimensional theory near the crack tip. It is possible to quantify the zone when the plane stress hypothesis is not valid according to the crack propagation speed V. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Recently developed continuum phase field models for brittle fracture show excellent modeling capability in situations with complex crack topologies including branching in the small and large strain applications. This work presents a generalization towards fully coupled multi-physics problems at large strains. A modular concept is outlined for the linking of the diffusive crack modeling with complex multi field material response, where the focus is put on the model problem of finite thermo-elasticity. This concerns a generalization of crack driving forces from the energetic definitions towards stress-based criteria, the constitutive modeling of degradation of non-mechanical fluxes on generated crack faces. Particular assumptions are made on the generation of convective heat exchanges approximating surface load integrals of the sharp crack approach by distinct volume integrals. The coupling effect is also shown in generation of cracks due to thermally induced stress states. We finally demonstrate the performance of the phase field formulation of fracture at large strains by means of representative numerical examples. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Markus Peters  Klaus Hackl 《PAMM》2006,6(1):189-190
The XFEM is known to approximate the displacements and stresses around a crack tip in a very efficient way. But as we will present in this paper we have to deal with a phenomenon coming along with this method that compels us to use higher order shape functions for those elements that are enriched by the crack tip functions. For the computation of the stress–intensity–factors we are using a J–integral over a circular domain Ω. The accuracy of the results depend on • the radius of Ω • the number of elements used in the XFEM computation • the number of nodes which were enriched by the crack tip functions (number of layers) and • the shape functions which were used for the standard FE term For more information about the XFEM we refer to [1]. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Charlotte Kuhn  Ralf Müller 《PAMM》2010,10(1):121-122
Sharp interface material models can be related to phase field models by introducing an order parameter, whose value is assigned to the different phases of a material. The elastic material law is coupled to the evolution equation of the order parameter and cracking is addressed as a phase transition problem instead of a moving boundary value problem. A regularization parameter ϵ controls the width of the diffuse cracks represented by the order parameter and the underlying sharp interface model can be recovered from the phase field model by the limit ϵ → 0. However, in numerical simulations using standard finite elements with linear shape functions, the minimum value of ϵ is restricted by the grid size and therefore the discretization of the crack field requires extensive mesh refinement for small values of ϵ. In this work, we construct special 2d shape functions which take into account the exponential character of the crack field and its dependence on the parameter ϵ. Especially in simulations with small values of ϵ and a rather coarse mesh, the elements with exponential shape functions perform significantly better than standard linear elements. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier–Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier–Stokes system and to the shape optimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号