首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamic response of mechanical and civil structures subject to high-amplitude vibration is often dangerous and undesirable. Vibrations and dynamic chaos should be controlled or eliminated in both structures and machines. This can be employed via passive and active control methods. In this paper, a tuned absorber, in the transversally direction, is connected to an externally excited spring–pendulum system (three degree of freedom), subjected to harmonic excitation. The tuned absorber is usually designed to control one frequency at primary resonance where system damage is probable. Active control is also applied to the considered system via negative displacement feedback to change the linear frequency of the system and to shift it away from the resonating one. Also active control is applied to improve the behavior of the spring–pendulum at the primary resonance via negative velocity feedback or its square or cubic value. The multiple time scale perturbation technique is applied throughout. The stability of the system is investigated applying both frequency response function and phase-plane method. The effects of the absorber and different parameters on system behavior are studied numerically. Optimum working conditions of the system are extracted applying both passive and active control methods, to be used in the design of such systems.  相似文献   

2.
Many low damped structures as turbine blades or drill strings are exposed to high dynamical loads causing high vibration amplitudes. These applications comprise sub-critical eigenfrequencies. Hereby, the lower eigenfrequencies have to be passed before reaching the operating point. Most investigations of vibration amplitudes caused by a resonance passage deal with the computation of single degree of freedom systems. Thereby, it has been shown that the stationary vibration response provides the highest possible amplitude. Further it can be stated that the maximum vibration response of the resonance passage decreases with an increasing sweep velocity [3]. Isolated modes of linear systems can be represented by single degree of freedom systems. Subsequently a mode shape can be described by the multiplication of the amplification function of the mode and the belonging eigenvector. There are only some recent works that deal with resonance passages of vicinal modes, e. g. [1]. In this paper the resonance passage of a three dimensional system with nearby modes is studied. To calculate the transient vibration response an analytical approach is used. It is shown that the maximum amplitude of the stationary vibration response is not the upper limit for the maximum amplitude of the resonance passage. Thus, the maximum amplitude may rise while the sweep velocity increases. Hence, regarding a multi degree of freedom system the maximum amplitude of the resonance passage can exceed the maximum amplitude of the stationary vibration response. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We investigate what happens to periodic orbits and lower-dimensional tori of Hamiltonian systems under discretisation by a symplectic one-step method where the system may have more than one degree of freedom. We use an embedding of a symplectic map in a quasi-periodic non-autonomous flow and a KAM result of Jorba and Villaneuva (J Nonlinear Sci 7:427–473, 1997) to show that periodic orbits persist in the new flow, but with slightly perturbed period and an additional degree of freedom when the map is non-resonant with the periodic orbit. The same result holds for lower-dimensional tori with more degrees of freedom. Numerical experiments with the two degree of freedom Hénon–Heiles system are used to show that in the case where the method is resonant with the periodic orbit, the orbit is destroyed and replaced by two invariant sets of periodic points—analogous to what is understood for one degree of freedom systems.  相似文献   

4.
Stefan Ringwelski  Ulrich Gabbert 《PAMM》2008,8(1):10699-10700
Over the past years much research and development has been done in the area of active control in order to improve the acoustical and vibrational properties of thin–walled lightweight structures. An efficient technique for actively reducing the structural vibration and sound radiation is the application of smart structures. In smart structures piezoelectric materials are often used as actuators and sensors. The design of smart structures requires fast and reliable simulation tools. Therefore, the purpose of this paper is to present a coupled finite element–boundary element formulation, which enables the modeling of piezoelectric smart lightweight structures. The paper describes the theoretical background of the coupled approach in which the finite element method (FEM) is applied for the modeling of the passive vibrating shell structure as well as the surface attached piezoelectric actuators and sensors. The boundary element method (BEM) is used to characterize the corresponding sound field. In order to derive a coupled FE–BE formulation additional coupling conditions are introduced at the fluid–structure interface. Since the resulting overall model contains a large number of degrees of freedom, the mode superposition method is employed to reduce the size of the FE submodel. To validate the accuracy of the proposed approach, numerical simulations are carried out in the frequency domain and the results are compared with analytical reference solutions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
《Applied Mathematics Letters》2005,18(10):1108-1115
In a previous article (Ref. [R. Glowinski, L.J. Shiau, Y.M. Kuo, G. Nasser, The numerical simulation of friction constrained motions (I): One degree of freedom models, Applied Mathematics Letters 17 (2004) 801–807]) the authors discussed the application of operator-splitting methods to the time-discretization of those mathematical relations describing the behavior of elasto-dynamical systems with friction, focusing on one-degree of freedom models. The main goal of the present article is to generalize the methodology discussed in Ref. [R. Glowinski, L.J. Shiau, Y.M. Kuo, G. Nasser, The numerical simulation of friction constrained motions (I): One degree of freedom models, Applied Mathematics Letters 17 (2004) 801–807]; there are no conceptual difficulties in doing so, the main issue being the computation of a vector-valued multiplier modeling the friction forces (or part of them). An iterative method allowing the computation of this multiplier will be discussed and the results of numerical experiments will be presented.  相似文献   

7.
A nonlinear analysis is performed to characterize the effects of a nonsmooth freeplay nonlinearity on the response of an aeroelastic system. This system consists of a plunging and pitching rigid airfoil supported by a linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom. The nonsmooth freeplay nonlinearity is associated with the pitch degree of freedom. The aerodynamic loads are modeled using the unsteady formulation. Linear analysis is first performed to determine the coupled damping and frequencies and the associated linear flutter speed. Then, a nonlinear analysis is performed to determine the effects of the size of the freeplay gap on the response of the aeroelastic system. To this end, two different sizes are considered. The results show that, for both considered freeplay gaps, there are two different transitions or sudden jumps in the system’s response when varying the freestream velocity (below linear flutter speed) with the appearance and disappearance of quadratic nonlinearity induced by discontinuity. It is demonstrated that these sudden transitions are associated with a tangential contact between the trajectory and the freeplay boundaries (grazing bifurcation). At the first transition, it is demonstrated that increasing the freestream velocity is accompanied by the appearance of a superharmonic frequency of order 2 of the main oscillating frequency. At the second transition, the results show that an increase in the freestream velocity is followed by the disappearance of the superharmonic frequency of order 2 and a return to a simple periodic response (main oscillating frequency).  相似文献   

8.
Nonlinear dynamics in the fundamental interaction between a two-level atom with recoil and a quantized radiation field in a high-quality microcavity is studied. We consider the strongly coupled atom–field system as a quantum–classical hybrid with dynamically coupled quantum and classical degrees of freedom. We show that, even in the absence of any other interaction with environment, the coupling of quantum and classical degrees of freedom provides the emergence of classical dynamical chaos from quantum electrodynamics. Chaos manifests itself in the atomic external degree of freedom as a random walking of an atom inside a cavity with prominent fractal-like behavior and in the quantum atom–field degrees of freedom as a sensitive dependence of atomic inversion on small variations in initial conditions. It is shown that dependences of variance of quantum entanglement and of the maximum Lyapunov exponent on the detuning of the atom–field resonance correlate strongly. It is shown that the Jaynes–Cummings dynamics can be unstable in the regime of chaotic walking of an atom in the quantized field of a standing wave in the absence of any other interaction with environment. Quantum instability manifests itself in strong variations of quantum purity and entropy and in exponential sensitivity of fidelity of quantum states to small variations in the atom–field detuning. It is quantified in terms of the respective classical maximal Lyapunov exponent that can be estimated in appropriate in–out experiments. This result provides a quantum–classical correspondence in a closed physical system.  相似文献   

9.
This paper presents a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two second-order subsystems which are referred to as the primary and secondary subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients which are computed by linear functions derived from the input–output mapping of the one-dimensional fuzzy rule base. Then, the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, a nonsingular terminal sliding mode control (NTSMC) method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system are given to show the effectiveness of the proposed method. It is seen that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods.  相似文献   

10.
To study the vibration of beams and columns, discretization techniques are required because such structures are continuous systems with infinite degrees of freedom. However, one can associate such systems to a system with a single degree of freedom, restricting the form to which the system will deform and describing their properties as a function of generalized coordinates. This technique is called the Rayleigh method. However, actual structures are more complex than simple beams and columns because their properties vary along their length. The objective of this work is to apply the technique recommended by Rayleigh to actual structures and find a single equation and correction factor that can be used to resolve practical problems in engineering. The structural elements selected for this study are metallic high-slenderness poles, for which the frequency of the first vibration mode were calculated analytically, as well as by finite element method-based computer modeling for comparative purposes. The results indicate that the analytical solution is 16% greater and 1% minor than the computational solution, and correction factors of 1.4 and 1.32 were found, respectively.  相似文献   

11.
Due to their almost unlimited resolution and fast dynamics, piezoelectric actuators are a common choice for mechatronic systems targeting positioning tasks with high demands on precision. However, these piezoelectric actuators inherently suffer from nonlinear characteristics (mainly hysteresis and creep effects) which need to be addressed by appropriate control strategies. The operator-based modified Prandtl-Ishlinksii (mPI) approach does not only model hysteresis effects with asymmetries and creep effects but also provides an analytical solution for its inverse model. Online feedforward compensation of the aforementioned nonlinear effects can be realized by using the inverse model and additional weight adaptation. In this paper, online compensation via the mPI model is applied to a commercial micro-positioning unit driven by piezoelectric actuators with more than one degree of freedom (DOF). For validation of the proposed approach, two coupled trajectories in the X-Y plane are utilized. Subsequent tracking error analysis validates the efficacy of the stated approach. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The analysis of the energy transfer between subsystems coupled in a hybrid system is an urgent problem for various applications. We present an analytic investigation of the energy transfer between linear and nonlinear oscillators for the case of free vibrations when the oscillators are statically or dynamically connected into a double-oscillator system and regarded as two new hybrid systems, each with two degrees of freedom. The analytic analysis shows that the elastic connection between the oscillators leads to the appearance of a two-frequency-like mode of the time function and that the energy transfer between the subsystems indeed exists. In addition, the dynamical linear constraint between the oscillators, each with one degree of freedom, coupled into the hybrid system changes the dynamics from single-frequency modes into two-frequency-like modes. The dynamical constraint, as a connection between the subsystems, is realized by a rolling element with inertial properties. In this case, the analytic analysis of the energy transfer between linear and nonlinear oscillators for free vibrations is also performed. The two Lyapunov exponents corresponding to each of the two eigenmodes are expressed via the energy of the corresponding eigentime components. Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 60, No. 6, pp. 796–814, June, 2008.  相似文献   

13.
Katrin Ellermann 《PAMM》2005,5(1):89-90
The dynamics of ships or offshore structures is influenced by several different effects, some of which have a distinctly nonlinear characteristic. Even though in many situations the motion can sufficiently be described by linear models, nonlinear phenomena play a crucial role in the investigation of some more critical operating conditions: Large amplitude motions, sudden jumps in the dynamical behavior and sensitivity to the initial conditions are likely to occur under some circumstances. The response of floating systems such as moored buoys and barges in regular waves can be approximated by analytical or numerical techniques. These analyses reveal the characteristics of different periodic motions. In order to determine how these responses change under a more general forcing, the motion of floating structures under the influence of random disturbances is described by probability distributions. Different mathematical tools can efficiently be applied to models with few degrees of freedom. The localized statistical linearization used here is also promising for larger systems. Modelling aspects of offshore structures and random waves are discussed as well as the determination of probability distributions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The design of vehicle bodies requires the knowledge of the vehicle's structural response to external loads and disturbances. In rigid multi-body simulation the dynamic behaviour of complex systems is calculated with rigid bodies and neglect of body elasticity. On the other hand, in finite element models large degree of freedom numbers are used to represent the elastic properties of a single body. Both simulation methods can be combined, if the finite element model size is reduced to a degree of freedom number feasible to multi-body simulation. The application to practical purposes requires the use and interconnection of several different software tools. In this contribution a holistic method is presented, which starts with the measurement or synthesis of loads and excitations, continues with the integration of a reduced finite element model into a multi-body system, the dynamic response calculation of this combined model, and concludes with the result expansion to the full finite element model for calculating strain and stress values at any point of the finite element mesh. The applied software tools are Simpack, Nastran, and Matlab. An example is given with a railway vehicle simulated on measured track geometry. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The coupled nonlinear Schrödinger equation in parity-time symmetric coupled waveguides is studied by means of the modified Darboux transformation method. The hierarchies of rational solutions and breather solutions are generated from the plane wave solution. Some basic properties of multi-rogue waves and multi-breathers including the superposed Kuznetsov–Ma solitons, Akhmediev breathers and their combined structures are discussed. Our results might provide useful information for potential applications of synthetic parity-time symmetric systems in nonlinear optics and condensed matter physics.  相似文献   

16.
The influence of the orientation of reinforcing fibers on the natural frequencies and mechanical loss coefficient of coupled vibrations of unsupported symmetric and asymmetric box beams, as evaluated in numerical experiments, is discussed. The calculations were performed under the assumption that the real parts of the complex moduli and mechanical loss coefficient are frequency-independent. Vibration modes were identified by their surface shapes. The boundaries of the regions of mutual transformation of interacting vibration modes were determined by the joint analysis of the dependences of the coupled and partial eigenfrequencies and the mechanical loss coefficients on the orientation angle of reinforcing fibers. It is established that vibrations of a symmetric box beam give rise to two primary interactions: bending–torsional and longitudinal–shear ones, which are united into a unique longitudinal–bending–torsional–shear interaction by the secondary interaction caused by transverse shear strains. Vibrations of an asymmetric box beam give rise to longitudinal–torsional and bending–bending (in two mutually orthogonal planes) interactions. It is shown that in a number of cases variation in the orientation angle of reinforcing fibers is accompanied with a mutual transformation of coupled vibration modes. If the differential equations for natural vibrations involve odd-order derivatives with respect to the spatial variable (a symmetric beam and the bending–bending interaction of an asymmetric beam), then, with variation in the orientation angle of reinforcing fibers, the mutual transformation of coupled vibration modes proceeds. If the differential equations for natural vibrations involve only even-order derivatives (the longitudinal–torsional interaction of an asymmetric beam), no mutual transformation of coupled vibration modes occurs.  相似文献   

17.
We consider a general class of preferential attachment schemes evolving by a reinforcement rule with respect to certain sublinear weights. In these schemes, which grow a random network, the sequence of degree distributions is an object of interest which sheds light on the evolving structures. In this article, we use a fluid limit approach to prove a functional law of large numbers for the degree structure in this class, starting from a variety of initial conditions. The method appears robust and applies in particular to ‘non‐tree’ evolutions where cycles may develop in the network. A main part of the argument is to show that there is a unique nonnegative solution to an infinite system of coupled ODEs, corresponding to a rate formulation of the law of large numbers limit, through C0‐semigroup/dynamical systems methods. These results also resolve a question in Chung, Handjani and Jungreis (2003). © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 703–731, 2016  相似文献   

18.
Mahmud Quasem  Stefan Uhlar  Peter Betsch 《PAMM》2008,8(1):10129-10130
The present work aims at the incorporation of control (or servo) constraints into finite–dimensional mechanical systems subject to holonomic constraints. In particular, we focus on underactuated systems, defined as systems in which the number of degrees of freedom exceeds the number of inputs. The corresponding equations of motion can be written in the form of differential–algebraic equations (DAEs) with a mixed set of holonomic and control constraints. Apart from closed–loop multibody systems, the present formulation accommodates the so–called rotationless formulation of multibody dynamics. To this end, we apply a specific projection method to the DAEs in terms of redundant coordinates. A similar projection approach has been previously developed in the framework of generalized coordinates by Blajer & Kołodziejczyk [1]. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This work is an extension of the paper (Proc. R. Soc. London 2005; 461A :1927–1950) to impact oscillators with more than one degree of freedom. Given the complex and even chaotic behaviour of these non‐smooth mechanical systems, it is essential to incorporate their qualitative physical properties, such as the impact law and the frequencies of the systems, into the envisaged numerical methods if the latter is to be reliable. Based on this strategy, we design several non‐standard finite difference schemes. Apart from their excellent error bounds and unconditional stability, the schemes are analysed for their efficiency to preserve some important physical properties of the systems including, among others, the conservation of energy between consecutive impact times, the periodicity of the motion and the boundedness of the solutions. Numerical simulations that support the theory are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Grzegorz Litak  Marek Borowiec 《PAMM》2008,8(1):10893-10894
We examine the Melnikov criterion for a transition to chaos in case of a single–degree–of–freedom nonlinear oscillator with the Duffing potential with a nonlinear hard stiffness and a kinematic excitation term caused by the road profile. Using the new effective Hamiltonian we have examined appearance of homoclinic orbits in a quarter car model. Cross–sections of stable and unstable manifolds defined the condition of transition to chaos through a homoclinic bifurcation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号