首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Reduction of the titanium-niobium oxides follows a common pattern. TiO2 is eliminated, to form a new phase richer in titanium than the original compound, and Nb(iv) replaces Ti(iv) in the original block structure, which is thereby enriched in niobium. With TiNb2O7, the second phase is a TiO2NbO2 solid solution, with the rutile structure, initially with a high titanium content, in equilibrium with a solid solution of composition Me3O7, isostructural with TiNb2O7. At log pO2 (atm) about ?9.0 this reaches the limiting composition Ti0.72Nb2.28O7, in equilibrium with Ti0.56Nb0.44O2. The Me3O7 block structure then transforms into the Me12O29 block structure (Ti2Nb10O29Nb12O29 solid solution), which rapidly increases in niobium content as reduction continues. Reduction of Ti2Nb10O29 at oxygen fugacities above log pO2 (atm) = ?9.0 forms the Me3O7 phase as the titanium-rich phase. At log pO2 = ?9.0, and a composition about Ti1.6Nb10.4O29, the rutile solid solution takes over as second phase. The niobium/titanium ratio in both phases rises as reduction proceeds, and the last vestiges of the Me12O29 phase, in equilibrium with the final product, Ti0.17Nb0.67O2, are almost denuded of titanium.  相似文献   

2.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

3.
Nanoparticles of Nb5+-Fe3+ codoped TiO2 with various Nb5+ concentrations (Nb/(Ti+Fe+Nb)=0-10.0 at%) and Fe3+ (Fe/(Ti+Fe+Nb)=0-2.0 at%) were synthesized using Ar/O2 thermal plasma. Dopant content, chemical valence, phase identification, morphology and magnetic properties were determined using several characterization techniques, including inductively coupled plasma-optical emission spectrometer, X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis diffuse reflectance spectrometer, field-emission scanning electron microscopy, transmission electron microscopy and SQUID commercial instrument. The XRD revealed that all the plasma-synthesized powders were exclusively composed of anatase as major phase and rutile. The rutile weight fraction was increased by the substitution of Fe3+ for Ti4+ whereas it was reduced by the Nb5+ doping. The plasma-synthesized Nb5+-Fe3+ codoped TiO2 powders had intrinsic magnetic properties of strongly paramagnetic and feebly ferromagnetic at room temperature. The ferromagnetic properties gradually deteriorated as the Fe3+ concentration was decreased, suggesting that the ferromagnetism was predominated by the phase composition as a carrier-mediated exchange.  相似文献   

4.
Subsolidus phase relations in the CuOx-TiO2-Nb2O5 system were determined at 935 °C. The phase diagram contains one new phase, Cu3.21Ti1.16Nb2.63O12 (CTNO) and one rutile-structured solid solution series, Ti1−3xCuxNb2xO2: 0<x<0.2335 (35). The crystal structure of CTNO is similar to that of CaCu3Ti4O12 (CCTO) with square planar Cu2+ but with A site vacancies and a disordered mixture of Cu+, Ti4+ and Nb5+ on the octahedral sites. It is a modest semiconductor with relative permittivity ∼63 and displays non-Arrhenius conductivity behavior that is essentially temperature-independent at the lowest temperatures.  相似文献   

5.
Phase relations and microstructures in the TiO2-rich part of the TiO2Ga2O3 pseudobinary system have been determined at temperatures between 1373 and 1623°K using X-ray diffraction and electron and optical microscopy. The phases occurring in the system are TiO2 (rutile), β-Ga2O3, a series of oxides Ga4Tim?4O2m?2 (m odd) which exist above 1463°K, and Ga2TiO5, which exists above 1598°K. The width of the phase region occupied by the Ga4Tim?4O2m?2 phases varies with temperature. At 1473°K it is narrow, and has limits of Ga4Ti25O56 to Ga4Ti21O48 while at higher temperatures it broadens to limits of from Ga4Ti27O60 to Ga4Ti11O28 at 1623°K. These phases are often disordered and crystals frequently contain partially ordered intergrowths of oxides with various values of m. On the TiO2-rich side of the phase region there is a continuous change in texture from rutile to the end members of the Ga4Tim?4O2m?2 structures. The findings are summarized on a phase diagram.  相似文献   

6.
Phase equilibria studies of the CaO:TiO2:Nb2O5 system confirmed the formation of six ternary phases: pyrochlore (A2B2O6O′), and five members of the (110) perovskite-slab series Can(Ti,Nb)nO3n+2, with n=4.5, 5, 6, 7, and 8. Relations in the quasibinary Ca2Nb2O7−CaTiO3 system, which contains the Can(Ti,Nb)nO3n+2 phases, were determined in detail. CaTiO3 forms solid solutions with Ca2Nb2O7 as well as CaNb2O6, resulting in a triangular single-phase perovskite region with corners CaTiO3-70Ca2Ti2O6:30Ca2Nb2O7-80CaTiO3:20CaNb2O6. A pyrochlore solid solution forms approximately along a line from 42.7:42.7:14.6 to 42.2:40.8:17.0 CaO:TiO2:Nb2O5, suggesting formulas ranging from Ca1.48Ti1.48Nb1.02O7 to Ca1.41Ti1.37Nb1.14O7 (assuming filled oxygen sites), respectively. Several compositions in the CaO:TiO2:Ta2O5 system were equilibrated to check its similarity to the niobia system in the pyrochlore region, which was confirmed. Structural refinements of the pyrochlores Ca1.46Ti1.38Nb1.11O7 and Ca1.51Ti1.32V0.04Ta1.10O7 using single-crystal X-ray diffraction data are reported (Fd3m (#227), a=10.2301(2) Å (Nb), a=10.2383(2) Å (Ta)), with Ti mixing on the A-type Ca sites as well as the octahedral B-type sites. Identical displacive disorder was found for the niobate and tantalate pyrochlores: Ca occupies the ideal 16d position, but Ti is displaced 0.7 Å to partially occupy a ring of six 96g sites, thereby reducing its coordination number from eight to five (distorted trigonal bipyramidal). The O′ oxygens in both pyrochlores were displaced 0.48 Å from the ideal 8b position to a tetrahedral cluster of 32e sites. The refinement results also suggested that some of the Ti in the A-type positions may occupy distorted tetrahedra, as observed in some zirconolite-type phases. The Ca-Ti-(Nb,Ta)-O pyrochlores both exhibited dielectric relaxation similar to that observed for some Bi-containing pyrochlores, which also exhibit displacively disordered crystal structures. Observation of dielectric relaxation in the Ca-Ti-(Nb,Ta)-O pyrochlores suggests that it arises from the displacive disorder and not from the presence of polarizable lone-pair cations such as Bi3+.  相似文献   

7.
采用静电纺丝技术制备的TiO2纤维作为模板和反应物,通过原位水热合成了具有异质结构的Bi2Ti2O7/TiO2复合纤维。利用X射线衍射(XRD)、扫描电镜(SEM)、能量散射光谱(EDS)、高分辨透射电镜(HRTEM)和紫外可见吸收光谱(UV-Vis)等分析测试手段对样品的结构和形貌进行表征。以罗丹明B为模拟有机污染物进行光催化降解实验。结果表明:花状Bi2Ti2O7纳米结构均匀地生长在TiO2纤维上,制备了Bi2Ti2O7与TiO2相复合的光催化材料,其光谱响应范围拓宽至可见光区,与纯TiO2纤维相比可见光催化活性显著提高,且易于分离、回收和循环使用。初步探讨了Bi2Ti2O7/TiO2异质结的生长机制和光催化活性提高机理。  相似文献   

8.
Interpretation of the reduction path of TiNb24O62 is complicated by uncertainty about both the stoichiometric ranges of the possible block structures and the formation of TiNb solid solutions. Reduction forms the Me12O29 phase, probably from the outset, with an initial composition close to Ti2Nb10O29, thereby rapidly depleting the Me25O62 phase of titanium. When log pO2 (atm) has dropped to ?9.62, a phase approximately Ti0.95Nb11.05O29 is in equilibrium with titanium-free Nb25O62 at its lower composition limit (NbO2.471). Nb25O62 is then reduced to Nb47O116 without change in the Me12O29. At ?9.62>log pO2 (atm) > ?10.0, niobium is transferred to the Me12O29 phase and Nb47O116 is consumed. A second univariant equilibrium is set up as Nb47O116 is reduced to Nb22O54. This is consumed in turn, to increase the niobium content of the Me12O29 until, at log pO2 close to ?10.8, monophasic Ti0.48Nb11.52O29 is formed. The (Ti,Nb)O2 solid solution then appears and the final product is Ti0.04Nb0.96O2, with the rutile superstructure cell reported for NbO2.  相似文献   

9.
The ferroelectric ceramics of Bi4Ti3O12, SrBi4Ti4O15, and lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 were synthesized, and their Raman spectra were investigated. La-doping resulted in the enlargement of remnant polarization of Bi4Ti3O12-SrBi4Ti4O15. The structure of the Bi2O2 layers and TiO6 octahedra of the intergrowth was found to be different from those of Bi4Ti3O12 and SrBi4Ti4O15. La3+ ions exhibit pronounced selectivity for the occupation of A site as La content is lower than 0.50, and tend to be incorporated into Bi2O2 layers when the La content is higher than 0.50. Lanthanum substitution brings about the structural phase transition in Bi4Ti3O12-SrBi4Ti4O15. The variation of ferroelectric property may be attributed to combined contribution from the decreasing of the oxygen vacancies, the relaxation of the lattice distortion, the destroying of the insulation and the space charge compensation effects of the Bi2O2 slabs.  相似文献   

10.
The pure Cr2O3 coated Li4Ti5O12 microspheres were prepared by a facile and cheap solutionbased method with basic chromium(III) nitrate solution (pH=11.9). And their Li-storage properties were investigated as anode materials for lithium rechargeable batteries. The pure Cr2O3 works as an adhesive interface to strengthen the connections between Li4Ti5O12 particles, providing more electric conduction channels, and reduce the inter-particle resistance. Moreover, LixCr2O3, formed by the lithiation of Cr2O3, can further stabilize Li7Ti5O12 with high electric conductivity on the surface of particles. While in the acid chromium solution (pH=3.2) modification, besides Cr2O3, Li2CrO4 and TiO2 phases were also found in the final product. Li2CrO4 is toxic and the presence of TiO2 is not welcome to improve the electrochemical performance of Li4Ti5O12 microspheres. The reversible capacity of 1% Cr2O3-coated sample with the basic chromium solution modification was 180 mAh/g at 0.1 C, and 134 mAh/g at 10 C. Moreover, it was even as high as 127 mAh/g at 5 C after 600 cycles. At-20℃, its reversible specific capacity was still as high as 118 mAh/g.  相似文献   

11.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

12.
A new pyrochlore-type Na0.32Bi1.68Ti2O6.46(OH)0.44 with the cubic cell of a=10.339(5) Å was prepared by hydrothermal reaction using TiO2 (anatase) and Bi2O3 in NaOH solution. This compound was obtained when the molar ratio of NaOH/TiO2 was above 2 and the reaction temperature was above 240 °C. The TG-curve of as-prepared sample showed a mass loss of 0.8 mass% which was caused by release of OH group. This compound decomposed to a pyrochlore-type compound and a layered-type Na0.5Bi4.5Ti4O15 above 800 °C. The optical band gap of Na0.32Bi1.68Ti2O6.46(OH)0.44 was estimated to be 2.5 eV.  相似文献   

13.
Na2Ti3O7 and Na2Ti6O13 were synthesized by sol-gel method in order to obtain pure phases. Different heat-treatments were applied on powders and pellets of these materials. The effects were studied by XRD, dilatometry, TGA-DTA, SEM and electrochemical impedance spectroscopy. Pure Na2Ti3O7 was obtained at 973 K. Sintering at 1373 K caused a partial decomposition into Na2Ti6O13. The Na2Ti3O7 powder sintered at 1273 K showed polygonal microstructure. Na2Ti3O7 pellets sintered at 1323 K for 10 h exhibited large structures. This latter microstructure decreased the electrical conductivity of Na2Ti3O7. Pure Na2Ti6O13 was obtained at 873 K. Sintering at 1073 K caused a partial decomposition into TiO2 (rutile). Na2Ti6O13 pellets sintered at 1323 K for 10 h exhibited common shrinkage behavior. This shrinkage process increased the electrical conductivity of this material. The presence of TiO2 resulted in a oxygen partial pressure dependence of the electrical conductivity.  相似文献   

14.
0引言近年来,柱撑法由于可以调节孔道结构和产物性能而被广泛用于制备高比表面的多孔催化剂及催化剂载体材料[1~3]。柱撑是指在无机层状主体化合物中引入客体聚合物阳离子,经热处理而形成二维多孔材料的过程[4]。以柱撑法在层状钛酸盐层间引入Keggin离子([Al13O4(OH)24(H2O)12]  相似文献   

15.
Lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3 with an ultrapure NASICON-type phase is syn-thesized by a 1,2-propylene glycol (1,2-PG)-assisted sol-gel method and characterized by differential thermal analysis-thermo gravimetric analysis, X-ray diffraction, scanning elec-tron microscopy, electrochemical impedance spectroscopy, and chronoamperometry test.Due to the use of 1,2-PG, a homogeneous and light yellow transparent precursor solu-tion is obtained without the precipitation of Ti4+ and Al3+ with PO43-. Well crystallizedLi1.3Al0.3Ti1.7(PO4)3 can be prepared at much lower temperatures from 850 oC to 950 oC within a shorter synthesis time compared with that prepared at a temperature above 1000 oC by a conventional solid-state reaction method. The lithium ionic conductivity of the sintered pellets is up to 0.3 mS/cm at 50 oC with an activation energy as low as 36.6 kJ/mol for the specimen pre-sintered at 700 oC and sintered at 850 oC. The high conductivity, good chemi-cal stability and easy fabrication of the Li1.3Al0.3Ti1.7(PO4)3 provide a promising candidate as solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

16.
Ni/NiCo2O4电极的制备及其析氧反应性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备NiCo2O4尖晶石粉体, 然后以多孔Ni 为基体, 通过复合溶胶涂覆结合烧结制备Ni/NiCo2O4 涂层电极. 运用扫描电子显微镜(SEM)、能量色散谱(EDS)和X 射线衍射(XRD)表征粉体以及Ni/NiCo2O4涂层电极的组成和结构. 采用循环伏安(CV), 稳态极化(LSV), 电化学阻抗谱(EIS), 恒电位阶跃以及恒电位长时间电解研究涂层电极在5 mol·L-1 KOH溶液中的电催化析氧反应(OER). 结果表明: Ni/NiCo2O4涂层电极与多孔Ni 电极对比, 具有低的析氧过电位、高的比表面积和高的稳定性能; 其中比表面积增大了28.69倍,表观活化能在不同过电位分别降低了166.78和162.15 kJ·mol-1.  相似文献   

17.
Some dielectric oxides have been synthesized and characterized in the BaO-La2O3-TiO2-Nb2O5 system. Through Rietveld refinement of X-ray powder diffraction data, Ba5LaTi2Nb3O18 and Ba4La2Ti3Nb2O18 are identified as the AnBn−1O3n (n=6) type cation-deficient perovskites with space group and lattice constants , and for Ba5LaTi2Nb3O18; , and for Ba4La2Ti3Nb2O18, respectively. Their ceramics exhibit high dielectric constant up to 57 and high quality factors (Qf) up to 21,273 GHz. The temperature coefficient of resonant frequency (τf) of these ceramics is decreased with the increase of B-site bond valence.  相似文献   

18.
Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti-tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are characterized by X-ray diffraction, scanning electron mi-croscopy, transmission electron microscopy and Braunauer-Emmett-Teller (BET) analysis. The electrochemical performances of these Li4Ti5O12 powders are also studied. The effect of different surfactants including citric acid, polyvinylpyrrolidone, and cetyltrimethyl am-monium bromide on the structure and properties is also investigated. It is found that pure spinel phase of Li4Ti5O12 is obtained at an annealing temperature of 700 oC or higher. The use of surfactants can improve the powder morphology of nanosized particles with less ag-glomeration. With suitable annealing temperature and the addition of surfactant, Li4Ti5O12 powders with high BET surface area and favorable electrochemical performance can be ob-tained.  相似文献   

19.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

20.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号