首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李彬  于颖  幸国香  邢金峰  刘万兴  张天永 《化学进展》2022,34(11):2340-2350
手性无机纳米材料因为具有优异的光物理特性及广泛的应用价值而备受关注。通过采用手性配体对无机纳米材料的表面进行修饰或将无机纳米材料与手性模板进行组装获得的手性结构,可以与光子强烈作用引起偏振态的改变,产生圆偏振光(circularly polarized light, CPL)。从产生机理来讲,CPL主要包括圆偏振荧光和圆偏振散射,在一些情况下这两个机理是共存的。本文总结了硫族半导体纳米材料、金属纳米团簇、钙钛矿、镧系配合物及其他复合纳米材料中CPL的研究进展。此外,还讨论了不同的手性无机纳米材料中CPL的主要来源。本综述得出的结论有望在分子水平上实现对CPL活性材料的各向异性因子进行调控,促进其在量子计算、光学数据存储、信息加密、3D显示器和光学传感等多个领域的发展。  相似文献   

2.
刘丽萱  杨扬  魏志祥 《化学学报》2022,80(7):970-992
手性有机半导体由于其新颖的性质引起了有机光电领域极大的研究兴趣. 将手性引入有机半导体材料不仅可以调控聚集态结构影响载流子输运进而影响光电器件的性能, 而且催生了圆偏振光直接发射与探测材料与器件的产生与发展. 手性材料与圆偏振光之间的相互作用使得其在3D显示、量子通讯、信息存储与处理等领域展示出广泛的应用前景. 本综述总结近年来手性有机光电材料及器件的研究进展, 主要围绕手性对有机半导体材料性质与器件性能的影响展开, 聚焦于手性有机半导体的圆偏振光直接发射与探测等研究, 旨在进一步为手性有机光电子领域的发展提供系统的认识.  相似文献   

3.
Chiral assemblies have attracted great interest because of their many potential applications, such as in chiral sensing, asymmetric catalysis, and optical devices. Here, by using specific DNAzymes, a chiral core–satellite assembly consisting of a DNAzyme-driven spiny nanorod dimer core and upconversion nanoparticle (UCNP) satellite was constructed. The chirality of this assembly originates from the geometry chirality. This chiral assembly can be used as a photothermally activated probe for the simultaneous detection of multiple analytes in living cells. Under illumination with 980 nm left circularly polarized (LCP) light, this probe was used to quantify and visualize intracellular metal ions.  相似文献   

4.
Herein, magnetic circularly polarized luminescence (CPL) (MCPL) spectroscopy was conducted to analyze an EuIII(hfa)3 complex with three chiral PIII-ligands. Resultantly, (R)-chirality luminophores with S-up orientation and (S)-chirality luminophores with N-up orientation were observed to possess symmetrical mirror image spectra, i. e., they were enantiomers. Similarly, the (R)-chirality luminophores with N-up orientation and the (S)-chirality luminophores with S-up orientation were also enantiomers. Contrarily, (R)-S-up and (S)-S-up were diastereomers and did not possess a mirror-image relationship. Likewise, (R)-N-up and (S)-N-up were diastereomers. The J-dependency of gMCPL and gCPL datasets suggested that the N-up/S-up external magnetic field, with the aid of chiral PIII-ligands, increased the gMCPL values by two- to sixteen-fold and modulated the gMCPL signs at J=1–4. Additionally, the origins of the nonideal mirror-symmetric CPL and MCPL spectral characteristics of EuIII(hfa)3 with three chiral PIII-ligands were discussed in terms of parity (space-inversion, P)-symmetry, time-reversal (T)-symmetry, and PT-symmetry laws.  相似文献   

5.
Circularly polarized(CP) light is a circularly polarized electromagnetic wave and is of significance for applications,such as information storage and encryption...  相似文献   

6.
The solution‐dispersed‐state and polymer‐dispersed‐state circular dichroism (CD) and circularly polarized luminescence (CPL) properties of chiral binaphthyl fluorophores could be controlled by the choice of open‐ or closed‐type substituents on the binaphthyl units and by the axial chirality of the binaphthyls.  相似文献   

7.
Carbon-based double helicates consisting of two anthracene-containing oligo(p-phenyleneethynylene) units and two flexible chiral 1,1′-binaphthyl units or two rigid chiral 9,9′-spirobifluorene units were developed. The curved oligo(p-phenyleneethynylene) fragments in the double helicates were successfully constructed by tin-mediated reductive aromatization. Helical oligo(p-phenyleneethynylene) double strands fixed by two rigid spirobifluorene units showed little structural change under photoirradiation, thereby emitting circularly polarized luminescence (CPL) in the visible region with a high quantum yield (ΦPL=0.93). In contrast, flexible binaphthyl units induced dynamic structural change of the oligo(p-phenyleneethynylene) luminophores under photoirradiation, leading to strong CPL (|glum|=1.1×10−2) in the near-infrared (NIR) region. UV/Vis, circular dichroism (CD), CPL and NMR spectroscopic analyses of the binaphthyl-hinged double helicate suggested excimer formation between two π-conjugated strands in the excited state. Theoretical calculations highlight the importance of the tightly interlocked excimer structure of the carbon-based double helicate in controlling the angle between the electric and magnetic transition dipole moments for strong NIR CPL generation.  相似文献   

8.
具有超分子手性的稀土螺旋体为合成高性能稀土圆偏振发光(CPL)材料提供了结构基础.然而,稀土Ln(Ⅲ)离子较大的半径和不稳定的配位几何构型为合成高光学纯度的稀土螺旋体带来了困难和挑战.本工作通过在双三齿配体端基引入点手性的方式成功构筑了一对儿对映体纯的手性双核三股铕螺旋体,[Eu2(LRR)3](OTf)6和[Eu2(...  相似文献   

9.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

10.
Atomically precise enantiomeric metal clusters are scarce, and copper(I) alkynyl clusters with intense circularly polarized luminescence (CPL) responses have not been reported. A pair of chiral alkynyl ligands, (R/S)‐2‐diphenyl‐2‐hydroxylmethylpyrrolidine‐1‐propyne (abbreviated as R/S‐DPM ) we successfully prepared and single crystals were characterized of optically pure enantiomeric pair of atomically‐precise copper(I) clusters, [Cu14(R/S‐DPM)8](PF6)6 (denoted as R/S‐Cu14 ), which feature bright red luminescence and CPL with a high luminescence anisotropy factor (glum). A dilute solution containing R/S‐Cu14 was nonluminescent and CPL inactive at room temperature. Crystallization‐ and aggregation‐induced emission (CIE and AIE, respectively) contribute to the triggering of the CPL of R/S‐Cu14 in the crystalline and aggregated states. Their AIE behavior and good biocompatibility indicated applications of these copper(I) clusters in cell imaging in HeLa and NG108‐15 cells.  相似文献   

11.
12.
13.
Herein is reported a circularly polarized luminescent (CPL) probe that can respond to the chirality of nucleic acids. An achiral nanostructure was prepared by the hybridization of symmetric serinol nucleic acid (SNA) containing pyrene-modified residues. When chiral oligomers that were complementary to the SNA were added, they induced helicity into the SNA nanowire. Efficient circular dichroism (CD) signal amplification was observed when pyrene was attached to uracil bases through a rigid alkynyl linker. Both CPL and CD signals were observed; they depended on the chirality of the added acyclic threoninol nucleic acid (aTNA) oligomer. This system can be used to convert the chirality of chiral biomolecules into chiroptical signals.  相似文献   

14.
Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs-based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size-dependent (chir)optical properties of a new class of chiral PAHs-containing conjugated macrocycles (cyclo[n]paraphenylene-2,6-anthrylene, [n]CPPAn2,6 ; n=6–8). Their inherent chiralities were squeezed out in small anthrylene-based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)-helicity of small [6-7]CPPAn s were achieved by HPLC. Interestingly, these macrocycles showed enriched size-dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain=60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs| and |glum|∼0.01 for an enantiomer of [6]CPPAn2,6 ), which can give them potential applications in optically active materials.  相似文献   

15.
Aggregation‐induced emission luminogens (AIEgens) are a new class of luminophors, which are non‐emissive in solution, but emit intensively upon aggregation. By properly designing the chemical structures of the AIEgens, their aggregation process can be tuned towards a desired direction to give diverse novel luminescent architectures of micelles, rods, and helical fibers. AIEgens represent a kind of promising building block for the fabrication of luminescent micro/nanostructures with controllable morphologies. In this review, we describe our recent work in this research area, focusing on the molecular design, circularly polarized luminescence properties, and helical self‐assembly behavior of AIEgens.  相似文献   

16.
Chirality at different levels is widely observed in nature, but the clue to connect it all together, and the way chirality transfers among different levels are still obscure. Herein, a l -/d -lysine-based self-assembly system was constructed, in which two-step chirality transfer among three different levels was observed in aqueous solution. The chirality originated from the point chirality of amino acid derivatives l -/d -PyLys hydrochloride, and was transferred to the planar conformational chirality of water-soluble pillar[5]arene pR-/pS-WP5. Then, with the aid of pR-/pS-WP5, nanoparticles were formed that exhibited L-/R-handed circularly polarized luminescence with a dissymmetry factor of up to ±0.001, arising from pyrene chiral excimers. This multilevel chirality transfer not only provides a perspective to trace potential clues, and to pursue certain ways by which the chirality transfers, but also offers a strategy to create controllable CPL emission in aqueous media.  相似文献   

17.
Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (μ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a “cascade cationic insertion” trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching −2.3×10−2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the “intrinsic” chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2+ transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.  相似文献   

18.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

19.
Planar chiral building blocks based on 4,7,12,15‐tetrasubstituted [2.2]paracyclophanes were obtained via a synthetic route involving an optical resolution step. Planar chiral enantiomers, comprising two fluorophores that were stacked to form a V‐shaped higher‐ordered structure, were synthesized from these building blocks. The V‐shaped molecules emitted intense circularly polarized luminescence (CPL). Their chiroptical properties were compared with those of X‐shaped molecules bearing the same two fluorophores stacked together. The CPL sign of the X‐shaped molecule was opposite to that of the V‐shaped molecule, which is supported by the theoretical results, indicating that the CPL sign can be controlled by the orientation of the stacked fluorophores.  相似文献   

20.
The chiral feature of γCD‐MOF, and especially the emergent cubic void, was not unveiled so far. Now, through the host–guest interaction between γCD‐MOF and achiral luminophores with different charges and sizes, the unique cubic chirality of the emerging void in γCD‐MOF as well as a size effect on CPL induction are revealed for the first time. Numerous achiral luminophores could be integrated into γCD‐MOF and emitted significantly boosted circularly polarized luminescence. While the small sized luminophores preferred to be loaded into the intrinsic void of γCD, large ones were selectively encapsulated into the cubic void. Interestingly, when the size of the guest luminophores was close to the cube size, it showed strong negative CPL. Otherwise, either positive or negative CPL was induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号