首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary: A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude.  相似文献   

2.
Tri- and pentablock amphiphilic copolymers containing hydrophobic poly(D,L-lactide) block(s) and hydrophilic polyethers were synthesized in order to obtain new precursor architectures suitable for drug delivery systems. Polyglycidol-6-poly(ethylene oxide)-b-poly(D,L-lactide) possess high hydroxyl functionality provided by the linear polyglycidol block. Thus very stable hydroxyl functionalized micelles in aqueous media were obtained. On the other hand poly(D,L-lactide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(D,L-lactide) form temperature sensitive aggregates. The copolymers obtained were analyzed by SEC and NMR, and their aqueous solution properties were followed by cloud point measurements and determination of critical micellization temperature. TEM was used for particles visualization.  相似文献   

3.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

4.
The pH-responsive double hydrophilic block copolymer poly(ethylene glycol)-b-poly(methacylic acid-co-4-vinyl benzylamine hydrochloride salt) (PEG-b-PMAA/PVBAHS) was synthesized. A series of PEG-b-PMAA/PVBAHS with different molecule weights and compositions were characterized by IR, 1H-NMR, elemental analysis and TGA. With different MAA/VBAHS ratio, the PEG-b-PMAA/PVBAHS copolymers had the different isoelectric point (IEP). Supermolecular structures of the block copolymers could be formed by the interionic interactions at different solution pH. Experiment results showed that the structures of the pH-responsive copolymers in aqueous solution could be changed at different pH environments. The aggregation of this double hydrophilic block copolymer in aqueous solution was determined by both of solution pH and copolymer composition.  相似文献   

5.
Poly(β-benzyl-l-aspartate)-block-poly(vinylpyrrolidone) diblock copolymers (PAsp(OBzl)-b-PVP) having both hydrophobic and hydrophilic segments of various lengths were synthesized by a combination of ATRP and ROP. These amphiphilic diblock copolymers formed polymeric micelles consisting of a hydrophobic PAsp(OBzl) core and a hydrophilic PVP shell in aqueous solution. The block copolymer was characterized using 1H NMR and gel permeation chromatography (GPC) analysis. Due to its core–shell structure, this block polymer forms unimolecular micelles in aqueous solutions. The micelle properties of PAsp(OBzl)-b-PVP diblock copolymer were extensively studied by dynamic light scattering (DLS), fluorescence spectroscopy, and transmission electron microscopy (TEM). PAsp(OBzl)-b-PVP copolymers displayed the lowest CMC and demonstrated little cytotoxicity when exposed to SW-1990 pancreatic cancer cells. In order to assess its application in biomedical area, the anti-inflammation drug prednisone acetate was loaded as the model drug in the polymeric nanoparticles. In vitro release behavior of prednisone acetate was investigated, which showed a dramatic responsive fast/slow switching behavior according to the pH-responsive structural changes of a micelle core structure. All of theses features are quite feasible for utilizing it as a novel intelligent drug-delivery system.  相似文献   

6.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

7.
Summary: Novel block copolymers poly(N-vinylpyrrolidone)-block-poly[(tert-butoxy) carbonyl] tryptophanamido-N′-methacryl thiourea (PVP-b-PTAM-I, II and III) were synthesized by atom transfer radical polymerization (ATRP) in DMF using PVP-Cl as macroinitiator. The structures of the copolymers were characterized by UV-vis and GPC-MALLS. The results revealed that the copolymers with controlled molecular weight and relatively low polydispersity (PDI < 1.34) were obtained through ATRP. By means of dynamic light scattering (DLS) and transmission electron microscopy (TEM), we demonstrated that copolymer PVP-b-PTAM self-aggregated to form spherical micelles in aqueous solution and the size of the micelles increased with increasing hydrophobic contents. The interaction of PVP-b-PTAM with DNA was explored using ethidium bromide (EB) quenching experiments. The interaction between PVP-b-PTAM and DNA markedly depended on both the copolymer concentration and composition. The PVP-b-PTAM-II and III with higher hydrophobic contents exhibited highly complexed DNA ability at low copolymer concentration, such as 0.017 mg/mL, relative to PVP-b-PTAM-I. As the copolymer concentration further increased for PVP-b-PTAM-II and III, they first exhibited a sharply decreased affinity for DNA and then kept steady. The interaction mechanism between the amphiphilic copolymers and the EB-DNA complex was discussed in detail.  相似文献   

8.
This study involves the investigation of the complexation ability of poly(2-[dimethylamino]ethyl methacrylate)-b-poly(hydroxypropyl methacrylate) (PDMAEMA-b-PHPMA) amphiphilic pH and thermoresponsive block copolymers, and their quaternized counterparts QPDMAEMA-b-PHPMA, toward short DNA in aqueous solutions. The PDMAEMA-b-PHPMA amphiphilic block copolymers present various self-assembly characteristics when inserted into aqueous media, depending on the composition, the solubilization protocol, the acidity and the temperature of the aqueous media. Copolymer aggregates-DNA interactions and nanostructure formation after complexation are investigated by dynamic light scattering and intensity measurements in aqueous solutions in a fixed temperature range, utilizing two different solubilization protocols for the copolymers. Ethidium bromide assays by fluorescence spectroscopy and ζ-potential measurements were also utilized to investigate the structure and properties of the DNA/copolymer polyplexes. The interpretation of such physicochemical characterization provides extra comprehension of the novel (Q)PDMAEMA-b-PHPMA copolymers self-assembly characteristics and assesses their ability for DNA complexation, stabilization, and delivery.  相似文献   

9.
We report novel micellar carriers, comprising pendant cinnamyl moieties in the core-forming block, designed to increase the solubilization of caffeic acid phenethyl ester (CAPE) in aqueous media. Amphiphilic poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) (PEO-b-P(CyCL-co-CL) diblock copolymers were synthesized by ring-opening copolymerization of α-propargyl-ε-caprolactone and ε-caprolactone from a monofunctional PEO macroinitiator and subsequent attachment of cinnamyl groups via click reaction. In addition, a linear PEO-b-PCL diblock copolymer was synthesized and used in this study for comparison. Next, nanosized micelles from PEO-b-P(CyCL-co-CL) and PEO-b-PCL were formed via the solvent evaporation method and then loaded with CAPE. Dynamic and electrophoretic light scattering, and transmission electron microscopy were used to characterize both blank and loaded carriers. The potential of the micelles comprising pendant cinnamyl group to solubilize CAPE in water was evaluated in a comparative fashion to that of nonmodified PEO-b-PCL diblock copolymer.  相似文献   

10.
Poly(ethylene glycol)-block-poly(γ-benzyl L-glutamate)-graft-poly(ethylene glycol) (PEG-b-PBLG-g-PEG) copolymer was synthesized by the ester exchange reaction of poly(γ-benzyl L-glutamate)-block-poly(ethylene glycol) (PBLG-block-PEG) copolymer with PEG chain, and PBLG-block-PEG copolymer was prepared by a standard N-carboxyl-γ-benzyl-L-glutamate anhydride (NCA) method. Nuclear magnetic resonance (NMR) spectroscopy was used to confirm the components of PBLG-block-PEG and PEG-b-PBLG-g-PEG. The self-association behaviors of PBLG-block-PEG and PEG-b-PBLG-g-PEG in ethanol were investigated by transmission electron microscopy (TEM), dynamic laser scattering (DLS), and viscometry. The experimental results revealed that the different molecular structures could exert marked effects on the self-assembly behaviors of PBLG-block-PEG and PEG-b-PBLG-g-PEG in ethanol. PBLG-block-PEG and PEG-b-PBLG-g-PEG could self-assemble to form polymeric micelles with a core-shell structure in the shapes of plump spherical and regular rice-like, respectively. Effects of the introduction of PBLG homopolymer on the average particle diameter of the micelles of PBLG-block-PEG and PEG-b-PBLG-g-PEG and influence of testing temperature on the critical micelle concentration of different copolymers were studied.  相似文献   

11.
三嵌段共聚物PAN-b-PEG-b-PAN的合成及其自组装行为的研究   总被引:3,自引:0,他引:3  
雷忠利  刘亚兰 《化学学报》2006,64(24):2403-2408
利用原子转移自由基聚合(ATRP)制得了分子量可控、分子量分布窄的聚丙烯腈-b-聚乙二醇-b-聚丙烯腈P(AN-b-PEG-b-PAN)嵌段共聚物. 通过1H NMR, FTIR, 凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了表征并通过TG和DTA考察了该嵌段共聚物的热稳定性; 运用透射电子显微镜(TEM)、荧光探针技术和动态光散射(DLS)研究了P(AN)27-b-P(EG)45-b-P(AN)27在溶剂水中胶束的形成、结构、形貌和胶束粒径. 结果表明, 三嵌段共聚物P(AN)27-b-P(EG)45-b-P(AN)27的热稳定性较纯聚乙二醇P(EG)好, 且柔性链PEG的引入对嵌段共聚物的放热峰位置没有显著的影响. 当改变此嵌段共聚物溶液浓度时, 该嵌段共聚物会自组装成不同形状的胶束, DLS测量的胶束粒径大于TEM观察的结果, 其临界胶束浓度(cmc)约为4.46×10-4 g•L-1.  相似文献   

12.
A novel amphiphilic copolymer poly(ethylene glycol)-block-poly(N,N-dimethylamino-2-ethylmethacrylate)-blockpoly[6-(4-methoxy-azobenzene-4’-oxy) hexyl methacrylate](PEG-b-PDMAEMA-b-PMMAzo) was prepared by ATRP polymerization.The self-assembly and responsive behaviors were investigated by SEM,TEM,LLS and UV-Vis spectra.The results indicated that the copolymers can self-assemble into spherical structures in aqueous media.The aggregate size can be tuned by pH and temperature.The trans-cis isomerization behavior of the formed aggregates was also examined.Upon irradiation with a linear polarized light,the elongation degree of the aggregates was increased with the irradiation time.  相似文献   

13.
Adding perfluoroalkyl (PF) segments to amphiphilic copolymers yields triphilic copolymers with new application profiles. Usually, PF segments are attached as terminal blocks via Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). The purpose of the current study is to design new triphilic architectures with a PF segment in central position. The PF segment bearing bifunctional atom transfer radical polymerization (ATRP) initiator is employed for the fabrication of triphilic poly(propylene oxide)-b-poly(glycerol monomethacrylate)-b-PF-b-poly(glycerol monomethacrylate)-b-poly(propylene oxide) PPO-b-PGMA-b-PF-b-PGMA-b-PPO pentablock copolymers by a combined ATRP and CuAAC reaction approach. Differential scanning calorimetry indicates the PF-initiator to undergo a solid–solid phase transition at 63°C before the final crystal melting at 95°C. This is further corroborated by polarized optical microscopy and X-ray diffraction studies. The PF-initiator could successfully polymerize solketal methacrylate (SMA) under typical ATRP conditions producing well-defined Br-PSMA-b-PF-b-PSMA-Br triblock copolymers that are then converted into PPO-b-PSMA-b-PF-b-PSMA-b-PPO pentablock copolymer via CuAAC reaction. Subsequently, acid hydrolysis of the PSMA blocks afforded water soluble well-defined triphilic pentablock copolymers PPO-b-PGMA-b-PF-b-PGMA-b-PPO with fluorophilic central segment, hydrophilic middle blocks, and lipophilic outer blocks. The triphilic block copolymers could self-assemble, depending upon the preparatory protocol, into spherical and filament-like phase-separated nanostructures as revealed by transmission electron microscopy.  相似文献   

14.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

15.
《Analytical letters》2012,45(17):2693-2707
The micellization behavior of novel tertiary amine methacrylate-based ABA type triblock copolymers formed by poly[2-(dimethylamino)ethyl methacrylate] [PDMA] middle block and poly[2-(diethylamino)ethyl methacrylate] [PDEA] or poly[2-(diisopropylamino)ethyl methacrylate] [PDPA] side blocks, PDPAm-b-PDMAn-b-PDPAl, and PDEAm-b-PDMAn-b-PDEAl was investigated. Both types of triblock copolymers were water-soluble and had potential for various applications due to their self-assembled and the bottom-up nanoscale micellar construction. The micellar aggregations of the triblock copolymers in aqueous solutions with varying comonomer ratios, molecular weights, temperatures, and pH values were investigated by small-angle X-ray scattering and dynamic light scattering. Compact micellar aggregations were obtained as 0.5 weight percent solutions at 20–21°C and pH 8.67 to 9.05, and characterized as polydispersed spherical core-shells. One group of triblock copolymer micelles had PDPA-cores with radii from 18 to 21 Å and PDMA-shell thicknesses of 89–105 Å, whereas the other group had PDEA-core spherical micelles with core radii of 60–62 Å and a PDMA-shell thicknesses of 64–66 Å.  相似文献   

16.
Atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) were combined to synthesize various polymers with various structures and composition. Poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate), PCL-PODMA, was prepared using both sequential and simultaneous polymerization methods. Kinetic studies on the simultaneous process were performed to adjust the rate of both polymerizations. The influence of tin(II) 2-ethylhexanoate on ATRP was investigated, which led to development of new initiation methods for ATRP, i.e., activators (re)generated by electron transfer (AGET and ARGET). Additionally, block copolymers with two crystalizable blocks, poly(ε-caprolactone)-b-poly(n-butyl acrylate)-b-poly(n-octadecyl methacrylate), PCL-PBA-PODMA, block copolymers for potential surfactant applications poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate-co-dimethylaminoethyl methacrylate), PCL-P(ODMA-co-DMAEMA), and a macromolecular brush, poly(hydroxyethyl methacrylate)-graft-poly(ε-caprolactone), PHEMA-graft-PCL, were prepared using combination of ATRP and ROP.  相似文献   

17.
The double hydrophilic block copolymer poly(ethylene glycol mono-methyl ether)-block-poly(4-vinylpyridine) (mPEG43-b-P4VP115) was synthesized by atom transfer radical polymerization. The structure, molecular weight and molecular weight distribution of mPEG43-b-P4VP115 were characterized by 1H-NMR and gel permeation chromatography combined with laser light scattering technique. The complex micelles based on mPEG43-b-P4VP115 and the disodium 2-naphthol-3,6-disulfonate were obtained in acid aqueous solution. The morphologies of the complex micelles were observed by transmission electron microscopy. The revertible temperature and pH-responsive behaviors of complex micelles were studied by dynamic light scattering and fluorescence techniques.  相似文献   

18.
Micelles with azobenzene at the coronas or the cores were prepared by the micellization of nonamphiphilic diblock copolymers through hydrogen bond cross-linking. We used 4-(phenylazophenoxymethyl)styrene (AS) as the azobenzene. A poly(vinylphenol)-block-poly(AS-co-styrene) diblock copolymer (PVPh-b-P(AS-co-St)) was prepared by combination of the nitroxide-mediated living radical polymerization and the hydrolysis. The copolymer contained ca. 1 mol% of the azobenzene units in the P(AS-co-St) blocks on the basis of 1H NMR analysis. The PVPh-b-P(AS-co-St) copolymer showed no micellization in 1,4-dioxane, the nonselective solvent. Dynamic light scattering demonstrated that the copolymer formed micelles in the presence of 1,4-butanediamine (BDA) in this solvent. 1H NMR analysis revealed that the azobenzene moieties were located at the coronas of the micelles, because the signals of the aromatic protons originating from the azobenzene had no changes in the shape and the intensity by the micellization. UV analysis supported the presence of the azobenzene at the micellar coronas. The size of the PVPh-b-P(AS-co-St) micelles was independent of the copolymer concentration. On the other hand, the aggregation number of the micelles was dependent not only on the copolymer concentration but also on the kind of the diamine. A poly(AS-co-vinylphenol)-block-polystyrene diblock copolymer (P(AS-co-VPh)-b-PSt) formed the micelles with the azobenzene at the cores of the micelles by BDA. UV analysis demonstrated that the azobenzene at the micellar cores still had the potential to function as photorefractive switching.  相似文献   

19.
Micelles with azo dye and UV absorbent at their cores or coronas were prepared from non-amphiphilic random diblock copolymers by α,ω-diamine. Poly[4-(phenylazophenoxymethyl)styrene-ran-4-(2-hydroxybenzophenoxymethyl)styrene-ran-vinylphenol]-block-polystyrene (P(AS-r-HBS-r-VPh)-b-PSt) and poly(vinylphenol)-block-poly[4-(phenylazophenoxymethyl)styrene-ran-4-(2-hydroxybenzophenoxymethyl)styrene-ran-styrene] (PVPh-b-P(AS-r-HBS-r-St)) diblock copolymers were prepared by living radical polymerization mediated by 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl. The former copolymer had a molecular weight of Mn[P(AS-r-HBS-r-VPh)-b-PSt] = 10,000-b-250,000 by 1H NMR and a molar ratio of AS:HBS:VPh = 0.01:0.01:0.98, while the latter had a molecular weight of Mn[PVPh-b-P(AS-r-HBS-r-St)] = 10,000-b-111,000 and a molar ratio of AS:HBS:St = 0.02:0.03:0.95. The copolymers showed no self-assembly in 1,4-dioxane because this solvent was non-selective to the copolymers. Dynamic light scattering demonstrated that the copolymers formed micelles in the solvent in the presence of α,ω-diamine. The hydrodynamic radii of the micelles slightly increased with the copolymer concentration decrease, while the aggregation numbers were almost independent of the copolymer concentration. It was found that P(AS-r-HBS-r-VPh)-b-PSt formed smaller micelles with a lower aggregation number than PVPh-b-P(AS-r-HBS-r-St) because of the steric hindrance of the AS and HBS units present at the micellar coronas.  相似文献   

20.
Organic–inorganic pentablock copolymers have been synthesized via atom transfer radical polymerization (ATRP) of styrene (St) and vinyl acetate (VAc) monomers at 60 °C using CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine as a catalyst system initiated from boromoalkyl-terminated poly(dimethylsiloxane) (PDMS)/cyclodextrins macroinitiator (Br-PDMS/γ-CD). Br-PDMS-Br was reacted with γ-CD in different conditions with inclusion complexes being characterized through hydrogen nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). Resulting Br-PDMS-Br/γ-CD inclusion complexes were taken as macroinitiators for ATRP of St and VAc. Well-defined poly(styrene)-b-poly(vinyl acetate)-b-poly(dimethylsiloxane/γ-cyclodextrin)-b-poly(vinyl acetate)-b-poly(styrene) (PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt) pentablock copolymer was characterized by 1H NMR, gel permeation chromatograph (GPC) and DSC. There was a good agreement between the number-average molecular weight calculated from 1H NMR spectra and that of theoretically calculated. Pentablock copolymers consisting of Br-PDMS-Br/γ-CD inclusion complex as central blocks (inorganic block) and PVAc and PSt as terminal blocks were synthesized by this technique. PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt pentablock copolymer can undergo a temperature-induced reversible transition upon heating of the copolymer complex from white complex at 22 °C to green complex in 55 °C which characterized with XRD and 1H NMR. XRD showed a change in crystallinity percent of St peak with changing the temperature which calculated by Origin75 software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号