首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerizations of styrene were carried out with half-sandwich complexes supported on silica, CpTiX3/MAO/SiO2 (X = Cl, F). The optimum values for the polymerization time, the amount of cocatalyst and the Alsupport/Ti ratio were found for the trichlorinated system. The highest activity obtained was 3,100 g sPS/(mol Ti × h × mol/L styrene). The trihalogenated complexes were compared to one another with respect to their polymerization rate. CpTiCl3/MAO/SiO2 and CpTiF3/MAO/SiO2 behave in a similar manner, suggesting that the active species of both half-sandwich complexes on the support are the same. Furthermore, aging experiments were carried out with CpTiCl3/MAO/SiO2 and, surprisingly, deactivation was observed, as opposed to supported zirconocenes which gain stability against deactivation reactions when anchored to a carrier. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2959–2968, 1999  相似文献   

2.
A supported-catalyst system for the polymerization of styrene was prepared by the immobilization of pre-activated indenyl titanium trichloride (IndTiCl3) with methylaluminoxane (MAO) on silica. This catalyst showed a higher productivity using a smaller amount of metallocene on the catalyst support. Other polymerization conditions that affect the productivity of the catalyst, including the ratio of Ti/SiO2 (wt%) and Al/Ti, and the time for polymerization, were also investigated. The polymers obtained from this system were extracted using methylethyl ketone and the syndiotacticity was calculated from the weight of the remaining insoluble polymer. With these optimized conditions, and the use of a heterogeneous catalyst, we developed a more efficient catalyst system that is more suitable for industrial applications than previously developed systems.  相似文献   

3.
Syndiotactic polystyrene (sPS) is a highly crystalline polymer with high melting point (270°C). The syndiospecific polymerization of styrene to sPS with metallocene catalysts is characterized by significant phase changes that lead to global gelation. Since sPS does not dissolve in styrene or solvents such as toluene and n-heptane, sPS precipitates out immediately from the liquid phase with the start of polymerization. The polymer crystallites aggregate to primary particles and they develop to a gel. The gelation is not due to cross-linking polymerization but due to strong molecular interactions between the polymer and monomer molecules. In this work, homogeneous Cp*Ti(OMe)3 catalyst is heterogenized or embedded into sPS prepolymer particles. The embedded catalyst has been tested in a laboratory scale diluent slurry process to illustrate the feasibility of slurry phase polymerization for the synthesis of sPS particles.  相似文献   

4.
Several non-metallocene (Ti, Zr) and substituted mono-Cp titanium metallocenes have been tested in the presence of methylalumoxane (MAO) as catalyst for syndiospecific polymerization of styrene. Effect of substitutions on the titanium and Cp ligand, molar ratio of Al/Ti, TMA and temperature on activity, Mwt. and % sPS were studied. CpTi(OiPr)3 gives a less active catalyst than Cp*Ti(OiPr)3 and the resulting sPS is less stereoregular and of lower molecular weight.  相似文献   

5.
A novel metallocene catalyst was prepared from the reaction of (η3‐pentamethylcyclopentadienyl)dimethylaluminum (Cp*AlMe2) and titanium(IV) n‐butoxide Ti(OBu)4. The resulting titanocene Cp*Ti(OBu)3 was combined with methylaluminoxane (MAO)/tri‐iso‐butylaluminum (TIBA) to carry out the syndiotactic polymerization of styrene. The resulting syndiotactic polystyrene (sPS) possesses high syndiotacticity according to 13C NMR. Catalytic activity and the molecular weight of the resulting sPSs were discussed in terms of reaction temperature, concentration of MAO, amounts of scavenger TIBA added, and the hydrogen pressure applied during polymerization.  相似文献   

6.
Syndiospecific polymerization of styrene (S) was catalyzed by Bz4Ti/MAO (tetrabenzyltitanium/methylaluminoxane). The product was separated into syndiotactic polystyrene (s-PS) and atactic polystyrene (a-PS) by extraction of the latter with boiling 2-butanone. Over the broad range of catalyst concentrations, compositions, and polymerization temperatures, the catalytic activity is 150 ± 80kg PS (mol Ti mo S h)?1 with 89 ± 5% yield of s-PS (SY). The concentration of active species has been determined by radiolabeling. Only about 1.7% of Bz4Ti initiates syndiospecific polymerization at 60°C with values of rate constants for propagation and for chain transfer to MAO of 1.38 (M s)?1 and 5.2 × 10?4s?1, respectively. Nonspecific polymerization was initiated by 16.8% of the Ti having values of 0.056 (M s)?1 and 6.5 × 10?4 s?1 for the rate constants of propagation and transfer, respectively. The effect of solvent polarity on the polymerization was studied using toluene mixed with chlorobenzene of o-dichlorobenzene as solvents. An increase of effective dielectric constant from 2.43 to 5.92 reduces the polymerization activity by a factor of two and lowers SY to mere 39%. In 1 : 1 toluene/chlorobenzene solvent mixture, it was found that 1.3% and 26% of the Bz4Ti initiate syndiospecific and nonspecific polymerizations of styrene, respectively. The Bz4Ti/MAO catalyst is poor in both productivity and stereoselectivity.  相似文献   

7.
Pentamethylcyclopentadienyltitanium tribenzyloxide, Cp*Ti(OBz)3, was used as the catalyst precursor for polymerizations of propene and styrene. The titanocene catalyst affords atactic polypropene and syndiotactic polystyrene with high activities in the presence of methylalumimoxane (MAO). Block copolymerization of propene and styrene was carried out in the presence of Cp*Ti(OBz)3/MAO catalyst system by the means of external addition of triisobutylaluminum (TIBA) and sequential monomer feed. The copolymerization product is mainly a mixture of atactic polypropene(aPP) and syndiotactic polystyrene(sPS) homopolymers and aPP-b-sPS block copolymers, which can be separated into fractions with successive extraction with boiling methylethyl ketone(MEK), heptane, tetrahydrofuran(THF), and chloroform. Studies on thermal properties showed that rubbery phases and crystalline regions both appear in the block copolymer at the room temperature and that aPP-b-sPS block copolymer has better toughness than sPS.  相似文献   

8.
Inorganic siliceous porous materials such as MFI type zeolite, mesoporous silica MCM‐41 and silica gel with different average pore diameters were applied to the adsorptive separation of methylaluminoxane (MAO) used as a cocatalyst in α‐olefin polymerizations. The separated MAOs combined with rac‐ethylene‐(bisindenyl)zirconium dichloride (rac‐Et(Ind)2ZrCl2) were introduced to propylene polymerization, and their influences on the polymerization activity and stereoregularity of the resulting polymers were investigated. The polymerization activity and isotactic [mmmm] pentad of the produced propylene were markedly dependent upon the pore size of the porous material used for adsorptive separation. From the results obtained from solvent extraction of the produced polymers, it was suggested that there are at least two kinds of active species with different stereospecificity in the rac‐Et(Ind)2ZrCl2/MAO catalyst system.  相似文献   

9.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

10.
Based on coordination polymerization mechanism only, novel stereoregular graft copolymers with syndiotactic polystyrene main chain and isotactic polypropylene side chain (sPS‐g‐iPP) were synthesized via two steps of catalytic reactions. First, a chain transfer reaction was initiated by a chain transfer complex composed of a styrene derivative, 1,2‐bis(4‐vinylphenyl)ethane, and hydrogen in propylene polymerization mediated by rac‐Me2Si[2‐Me‐4‐Ph(Ind)]2ZrCl2 and MAO, which gave iPP macromonomer bearing a terminal styryl group (iPP‐t‐St). Then the iPP‐t‐St macromonomers of varied molecular mass were engaged in syndiospecific styrene polymerization over a typical mono‐titanocene catalyst (CpTiCl3/MAO) under different conditions to produce sPS‐g‐iPP graft copolymers of varied structure. With an effective purification process, well‐defined sPS‐g‐iPP copolymers were obtained, which were then subjected to differential scanning calorimetry (DSC) and polarized optical micrograph (POM) studies. The graft copolymers were generally found with dual melting and crystallization temperatures, which were ascribable respectively to the sPS backbone and iPP graft. However, it was revealed that the two segments displayed largely different melting and crystallization behaviors than sPS homopolymer and the precursory iPP‐t‐St macromonomer. Consequently, the graft copolymer exhibited much distinctive crystalline morphologies when compared with their individual components. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
An equimolar mixture of Cp*Ti(CH3)3 (2) and Ph3C+[B(C6F5)4]? (1) forms a highly active and syndioselective catalyst for the polymerization of styrene, producing 96% syndiotactic polystyrene (PS) at an activity of 0.91 × 107 g PS (mol Ti)?1 (mol styrene)?1 h?1. Both activity and syndioselectivity can be increased using tri–isobutylaluminum (TIBA) to scavenge the system. ESR measurements indicate that the polymerization proceeds via titanium(IV) intermediates. Catalysts derived from 2/methylaluminoxane (MAO) as well as Cp*TiCl3/MAO also function as syndioselective styrene polymerization catalysts, but are less active than the ‘cationic’; system derived from 1 and 2.  相似文献   

12.
Summary: The solvent‐free syndiospecific styrene polymerization as an example of a coordination polymerization has been investigated with a catalyst system consisting of η5‐octahydrofluorenyl titanium trimethoxide as a transition metal catalyst, MAO as a cocatalyst, and TIBA, in the presence of reaction products of sterically hindered phenolic compounds, usually applied as heat stabilizers of polymers. Unexpectedly, such reaction products led to a significant increase in polymerization activity of the catalyst system. Second, after deactivation of the catalyst system, such activators result in a significantly enhanced thermal stability of the syndiotactic polymers received.

Effect of the P8‐activator on polymerization activity in dependence on polymerization time (molar ratio–styrene:MAO:TIBA:P:Ti = 700 000:50:25:25:1; molar ratio–phenolic compound:TIBA = 1:3.2; polymerization temperature: 50 °C).  相似文献   


13.
单茂钛催化剂的苯乙烯间规聚合和乙烯聚合的比较   总被引:2,自引:0,他引:2  
考察三甲基铝(TMA) 部分水解法制备固体改性甲基铝氧烷(m MAO) 时,反应物H2O 和TMA 的摩尔比对m MAO 的产量及m MAO 中TMA 含量的影响;以五甲基茂基三苄氧基钛[Cp * Ti(OBz)3]/m MAO 组成的均相催化体系,分别考察m MAO 的用量[ 即Al/Ti 摩尔比] 及m MAO 中TMA 含量对苯乙烯间规聚合和乙烯聚合的影响.通过分析Cp * Ti(OBz)3/m MAO 催化体系钛氧化态的分布,发现Ti( Ⅲ) 活性中心有利于合成间规聚苯乙烯;而Ti( Ⅳ) 活性中心有利于合成聚乙烯.苯乙烯间规聚合时,外加三异丁基铝(TIBA) ,将提高催化活性,同时可节省MAO 用量.  相似文献   

14.
Chemical modification on the stereo‐regular poly(styrene‐co‐4‐methylstyrene) (sPS‐PMS) was attempted in this study. Metallocene copolymerization of styrene (St) and 4‐methylstyrene (MSt) was performed by using η5‐pentamethylcyclopentadienyl‐titanium(IV)tributoxide (Cp*Ti(OBu)3)/methylaluminoxane (MAO)/tri‐iso‐butylaluminum (TIBA) catalyst in the bulk state. Cobalt(II) catalyst was then applied to oxidize the benzylic methyl group on the MSt units of the resulting sPS‐PMS copolymer. Both aldehyde and carboxylic acid in the oxidized products were resolved by the FTIR and 1H NMR. The oxidized sPS‐PMSs exhibit a low and a high‐temperature Tg and Tm corresponding to the transitions in the amorphous and the crystalline regions. Hydrogen‐bond and polar interactions between the aldehyde and carboxylic acids tend to interrupt the regular chain packing of the oxidized sPS‐PMS, resulting in the lowering of Tm with oxidation level. The oxidized sPS‐PMS showed better adhesion to glass fiber than pure sPS‐PMS copolymer as evaluated from the respective SEM fractured micrographs.  相似文献   

15.
新型茂钛催化剂的分子设计与苯乙烯间规聚合   总被引:5,自引:0,他引:5  
合成了CpTiCl3/MAO、Cp*TiCl3/MAO、Cp*Ti(OCH2CH=CH2)3/MAO和cp*Ti(OMe)3/MAO四种均相催化体系.结果发现,[Cp*Ti(OCH2CH=CH2)3]/甲基铝氧烷(MAO)催化体系热稳定性较高,在333~363K下进行苯乙烯问规聚合具有最高的催化活性;聚合反应产物用沸丁酮抽提8h,不溶部分间规聚苯乙烯(sPS)占总聚合产物重量的98%以上,sPS的分子量Mv达到4.15×105~2.46×105范围,熔融温度高达543K.  相似文献   

16.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

17.
单茂钛化合物/MAO/AlR_3均相催化体系合成sPS与aPP研究   总被引:4,自引:1,他引:4  
先考察部分水解三甲基铝(TMA)制备固体改性甲基铝氧烷(m MAO)时,反应物H2O和TMA的摩尔比对固体产物m MAO中TMA含量的影响;然后考察不同的钛化合物特别是茂钛化合物(LnTiXn′,n=1,2,n′=2,3)和m MAO组成的均相催化体系分别进行苯乙烯间规聚合和丙烯无规聚合的效果作比较.在此基础上分析以茂基三正丙氧基钛[CpTi(OPrn)3]为主催化剂,不同TMA含量的m MAO为助催化剂,及外加各种烷基铝(AlR3)所组成的催化体系中钛的氧化数,同时对苯乙烯间规聚合和丙烯无规聚合进行比较研究,从中发现活性中心钛的氧化数以Ti(Ⅲ)为主时有利于苯乙烯间规聚合,不利于丙烯无规聚合;而氧化数以Ti(Ⅳ)为主时则对丙烯无规聚合有利.苯乙烯间规聚合时,外加烷基铝可节省MAO用量.  相似文献   

18.
Silica supported (butylcyclopentadienyl)2ZrCl2/MAO catalysts were synthesized according to the “incipient wetness” method from a solution of metallocene in a liquid monomer. The monomer was allowed to polymerize yielding a catalyst containing polyhexene (PH), polystyrene (PS) or polyoctadiene (PO). One catalyst containing no polymer was also synthesized. The catalysts were used to polymerize ethene at 70°C and 4 bar total pressure. The measured average activities were 5 300 kg PE/(mol Zr · h) for (BuCp)2ZrCl2/MAO/PH/SiO2, 8 600 kg PE/(mol Zr · h) for (BuCp)2ZrCl2/MAO/PS/SiO2, 3 400 kg PE/(mol Zr · h) for (BuCp)2ZrCl2/MAO/PO/SiO2 and 5 700 kg PE/(mol Zr · h) for (BuCp)2ZrCl2/MAO/SiO2. The polyhexene, polystyrene or polyoctadiene in the catalyst forms a protective layer around the active sites. Even after exposure to air for five hours these catalysts retain some polymerization activity.  相似文献   

19.
Benzyl cyclopentadienyl titanium trichloride (BzCpTiCl3) was synthesized from benzyl bromide, cyclopentadienyl lithium, and titanium tetrachloride and used in combination with methylaluminoxane (MAO) for the syndiospecific polymerization of styrene. Kinetic measurements of the polymerization were carried out at different temperatures. The polymerization with BzCpTiCl3/MAO differs from the polymerization with cyclopentadienyl titanium trichloride in its behavior toward the Al/Ti ratio. In addition, high activities are observed at high Al/Ti ratios. By analyzing the polymerization runs and the physical properties of the polymers with differential scanning calorimetry, 13C NMR spectroscopy, wide‐angle X‐ray scattering measurements, and gel permeation chromatography, we found that the phenyl ring coordinates to the titanium atom during polymerization. Other known substitutions of the cyclopentadienyl ring (V. Scholz, Dissertation, University of Hamburg, 1998) in principle influence the polymerization activity. The physical properties of the polymers produced by the catalysts already known are nearly identical. BzCpTiCl3 is the first catalyst that leads to polystyrene obviously different from the polystyrene produced by other highly active catalysts. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2805–2812, 2001  相似文献   

20.
非MAO的茂钛均相催化体系催化苯乙烯间规聚合———[CpTiMe3]/[Ph3C]+[B(C6F5)4]-催化体系许光学林尚安(中山大学高分子研究所广州510275)关键词茂钛络合物,茂金属催化剂,苯乙烯,间规聚苯乙烯间规聚苯乙烯(sPS)由于具...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号