首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.  相似文献   

2.
通过相差显微镜和计算机图像处理来研究两相聚合物体系的粗化过程 .将具有不同聚比的乙烯 聚醋酸乙烯酯 (EVAc)共聚物与聚丙烯 (PP)共混 ,制备不同相界面张力的系列共混物薄膜 .观察了在玻璃基板的作用下 ,不同界面张力体系的分散相粒子粗化行为 ,发现界面张力在约 0 4 8·1 0 - 5N cm以上的体系中分散相粒子的粗化有明显的加速现象 ,粒子体积生长与时间关系的指数大于 1 0 ;而两相界面张力较低的情况下 ,选择具有不同表面极性的基板对同一体系试验 ,我们均未发现有粗化加速现象产生 ,且采用不同基板之间的试验结果差异很小 ,亦即当高分子共混物的相界面张力大于一定值时 ,仅与基板存在有关 ,粒子的粗化行为被加速  相似文献   

3.
This article presents a simple, fast and low-cost method to fabricate a flexible UV light photomask. The designed micropatterns were directly printed onto transparent hybrid composite film of biaxially oriented polypropylene coated with silica oxide (BOPP-SiO x ) by an inkjet printer. Compared to the conventional chrome-mask, it is of advantages such as suitable for non-planar substrates, scalable for large area production, and extreme low cost. Combined with the confined photo-catalytic oxidation (CPO) reaction, the printed flexible BOPP-SiO x photomask was successfully used to pattern the shape of wettability of organic polymer surfaces, and then polyaniline patterns were deposited on the modified substrates with strong adhesion. With the above photomasks, the polyacrylic acid graft chains were duplicated on the poly (ethylene terephthalate) (PET) and BOPP substrates by photografting polymerization. We grafted polyacrylic acid (PAA) on a non-planar plastic substrate with this soft and thin plastic photomask. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the surface morphology and thickness of ink layers of the printed photomask. Optical microscopy was used to characterize the deposition polyaniline micropatterns. It was found that the desired patterns were precisely printed on the modified polymer films and were applied in modifying organic polymer substrates. The printed photomask could be exploited in the fields such as prototype microfluidics, micro-sensors, optical structures and any other kind of microstructures which does not require high durability and dimensional stability.  相似文献   

4.
The performance of organic photovoltaic devices based upon bulk heterojunction blends of donor and acceptor materials has been shown to be highly dependent on the thin film microstructure. In this tutorial review, we discuss the factors responsible for influencing blend microstructure and how these affect device performance. In particular we discuss how various molecular design approaches can affect the thin film morphology of both the donor and acceptor components, as well as their blend microstructure. We further examine the influence of polymer molecular weight and blend composition upon device performance, and discuss how a variety of processing techniques can be used to control the blend microstructure, leading to improvements in solar cell efficiencies.  相似文献   

5.
The plasma polymerization of aniline on different surface functionlized low-density polyethylene (LDPE) substrates was investigated, and the resulting polymer was characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The results showed that the structure of plasma-polymerized polyaniline was rather different from polyaniline synthesized by conventional chemical and electrochemical methods. This difference may be due to extensive coupling reactions and cross-linking reactions during the plasma polymerization process. The use of acrylic acid graft copolymerized LDPE substrate significantly enhanced the adhesion of the polyaniline to the substrate over that observed with pristine LDPE. The plasma polymerized polyaniline can be rendered electrically conductive if the polymerization is carried out on a polystyrenesulfonic acid-coated LDPE substrate. Conductivity can also be induced by acid protonation of the polyaniline by HClO(4). The reaction of the plasma-polymerized polyaniline with viologen grafted on the substrate under UV irradiation and with AuCl(3) and Pd(NO(3))(2) in acid solutions was also investigated.  相似文献   

6.
以DNA为模板构造苯胺-DNA复合物纳米线和聚苯胺纳米导线   总被引:6,自引:0,他引:6  
在溶液中, 以DNA为模板构造出了线性的苯胺-DNA复合物纳米线. 用压缩气流将得到的复合物纳米线拉直并固定到云母基底上. 用原子力显微镜(AFM)可观察到形貌规整的苯胺-DNA复合物纳米线. 苯胺单体在溶液中能从各个方向上组装到DNA分子上, 从而使DNA模板分子的表面包裹了一层苯胺. 以苯胺-DNA复合物纳米线为前驱体通过进一步化学氧化聚合得到了以DNA为模板的聚苯胺纳米导线.  相似文献   

7.
基板界面对PS/PMMA共混物薄膜相逆转组成比的影响   总被引:2,自引:0,他引:2  
近年来高分子共混体系中的界面、表面效应逐渐引起了越来越多研究者的兴趣 .人们发现 ,当共混物薄膜厚度减至一定程度时 ,聚合物共混物薄膜中的相形态、相容性及相分离动力学与本体中有较大的不同[1~ 3] .基板界面作用对共混薄膜体系的热力学、动力学行为产生很大的影响 .我们以往的研究 [4 ,5]也发现 ,PP/EVAc(70 /30 )共混体系退火过程中 ,基板界面 (如玻璃 )作用可大大加速分散相(EVAc)粒子的粗化凝聚过程 .本研究用聚甲基丙烯酸甲酯和聚苯乙烯共混物的四氢呋喃溶液在不同基板介质 (如玻璃基板 ,PP基板 )上成膜 ,用相差显微镜观测了…  相似文献   

8.
The surface structure of thin polymer blend films of deuterated polystyrene (dPS) and polyparamethylstyrene (PpMS) after annealing above the glass transition temperature was investigated. With scanning force microscopy (SFM) the surface topography originated by a dewetting process is detected. The sample surface is covered with small droplets consisting of several polymer molecules. Utilizing grazing incidence small angle neutron scattering (GISANS) the topographical information as well as the in‐plane composition is probed. For thin confined blend films a substructure of the droplets resulting from an additional phase separation process at different length scales is detected.  相似文献   

9.
Polyaniline is emerging as an important polymer material which offers challenging opportunities for both fundamental research and new technological applications in waveguides. Metal doped polyaniline has been prepared initially in the form of powder by a solution growth technique. The emeraldine salt with doped metal was also prepared by solution growth technique. This powder was used for vacuum evaporation on optically flat glass substrate. The dark green doped (Fe, Al) polyaniline thin films were prepared by vacuum evaporation technique (10?4 torr). Deposited waveguide thin films have been characterized structurally, using X‐ray diffraction (XRD), optically etc. Effective refractive index of the thin film waveguide was also calculated theoretically and experimentally. Waveguide parameters, namely refractive index, propagation loss and depth of vacuum deposited polyaniline thin films optical waveguide have been determined. The optical spectra and structure and waveguide parameters of vacuum deposited polyaniline thin films are strongly affected by the type of doping. It is possible to reduce the losses by addition of Fe to the vacuum deposited polyanine thin film and modify the effective refractive index (Oeff) according to particular requirements. Results are compared with the results in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
研究了玻璃基板作用下极性高聚物为低组分的共混物薄膜在退火条件下相形态的发展过程 .选用聚苯乙烯 (PS) 聚甲基丙烯酸甲酯 (PMMA)与聚苯乙烯 (PS) 聚ε 己内酯 (PCL)两个体系 ,在玻璃基板上Spin Coating成膜后退火 .由于共混物薄膜中极性相对较大的高聚物组分 (PMMA和PCL)相对于极性较小的PS组分对玻璃基板具有更好的润湿性 ,所以在上述的两个共混薄膜体系中其相形态分别显示PMMA和PCL在低组分比例下最终发展成为连续相 .利用扫描电镜以及元素分析很好地验证了以上的结论 ,并且对其机理进行了解释 .此外 ,改变PS的分子量与PCL共混 ,研究了组分粘度对薄膜相形态发展的影响 .结果表明 ,PS组分粘度越大 ,共混物薄膜相结构发展速度越慢  相似文献   

11.
我们将有机发光分子选择性地吸附在PANI结构上形成有机发光图案, 作为诱导模板聚苯胺的结构可以通过纳米压印和沉积相结合的方法制备. 通过在PANI 结构的空隙处修饰氟代硅烷增大样品表面不同区域的亲疏水差异, 从而诱导有机发光分子的选择性吸附.  相似文献   

12.
Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT, is a semiconducting polymer that forms thin film transistors (TFTs) with high field effect mobility on silicon dioxide dielectrics that are treated with alkyltrichlorosilanes ( approximately 0.2 to 0.5 cm2/V s) but forms TFTs with poor mobility on bare silicon dioxide (<0.005 cm2/V s). The microstructure of spin-coated thin films of PBTTT on these surfaces was studied using synchrotron X-ray diffraction and atomic force microscopy. PBTTT crystallizes with lamellae of pi-stacked polymer chains on both surfaces. The crystalline domains are well-oriented relative to the substrate in the as-spun state and become highly oriented and more ordered with thermal annealing in the liquid crystalline mesophase. Although the X-ray scattering from PBTTT is nearly identical on both surfaces, atomic force microscopy showed that the domain size of the crystalline regions depends on the substrate surface. These results suggest that electrical transport in PBTTT films is strongly affected by the domain size of the crystalline regions and the disordered regions between them.  相似文献   

13.
Silicon substrates with (100) orientation were modified with amino-silane self-assembled monolayer (SAM) to provide amino (NH(2)) moieties at the substrate surface. Self-organization of polyaniline during chemical polymerization, on this modified surface, leads to the growth of highly oriented films at the substrate-polymer interface. The morphology studied using scanning electron microscopy and atomic force microscopy revealed the formation of polymer film with well faceted pyramidal crystallites. XPS and FTIR spectroscopy were used to analyze the chemical structure of the film. X-ray diffraction measurements show the crystalline nature of the polyaniline, whose lattice parameters are in agreement with the reported values. This study underlines the importance of a SAM in deciding the structure and morphology of the deposited polymer.  相似文献   

14.
In the present work broadband dielectric relaxation spectroscopy measurements were employed to investigate the dielectric properties of polymer composites. A polyethylene/polyoxymethylene (PE/POM) thermoplastic blend was used as a matrix, while the inclusions were iron (Fe) particles. For comparison, the two pure polymers- PE and POM- were used as a matrix, too. In the PE/POM-Fe composites, the polymer matrix is two-phase and the filler particles are localized only in the POM phase, resulting in an ordered distribution of the dispersed filler particles within the blend. In PE-Fe and POM-Fe composites, the filler spatial distribution is random. The behaviour of all the composites studied is described in terms of the percolation theory. The PE/POM-Fe composites, based on the PE/POM blend, demonstrate different electrical behaviour compared to that of POM-Fe and PE-Fe systems. The percolation threshold value of the PE/POM-Fe composites was found much lower than that of the other two systems. The results were related to the microstructure of the composites. A schematic model for the morphology of the composites studied has been proposed. This model explains the peculiar behaviour of the PE/POM-Fe composites by taking into account the ordered distribution of the filler particles in a binary polymer matrix. Optical microscopy photographs confirm this model.  相似文献   

15.
Summary: We report an artful method to form a stable pattern of chiral polyaniline nanocomposites (CPANs). It consists of the preparation of a diazoresin (DR)/poly(acrylic acid) (PAA) thin buffer layer on an Si substrate by self‐assembly, followed by the deposition of a multi‐layer film by spin‐assembly, leading to the formation of a (DR/PAA)2DR/(CPAN/DR)n film on the substrate. After selective exposure to UV light through a photomask and the development process, a defined pattern is formed.

Scanning electron microscopy image of the patterned (CPAN/DR)5 thin film on Si wafer.  相似文献   


16.
Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline (PANi) and polyaniline-poly(vinylidene fluoride) blend (PANi-PVDF) membranes were prepared by solution casting and phase inversion techniques. Both of the mechanical and filtration properties of the membranes depend on the polymer composition and doping level of the blends. The elasticity of the membrane is greatly improved upon introducing poly(vinylidene fluoride) into the blend. The water permeability of the blend membranes is further enhanced when the membranes are doped with hydrochloric acid. The PANi-PVDF blend membranes are capable of recovering metallic gold from the acid/halide leaching streams spontaneous and sustainably, and are promising candidates for wastewater treatments in electronic industries.  相似文献   

17.
In the present work, physico-chemical properties of conducting polyaniline (PANI) prepared by laccase-catalyzed oxidative polymerization in water dispersions of sodium dodecylbenzenesulfonate micellar solutions were studied. The polymer was characterized using FTIR spectroscopy, cyclic voltammetry, termogravimetry, transmission electron microscopy, and electron diffraction. The antistatic properties of the obtained polyaniline were also studied.  相似文献   

18.
Two-dimensional palladium (Pd) nanostructures have been fabricated by electrochemical deposition of Pd onto an indium tin oxide glass substrate modified with a thin flat film of polypyrrole or a nanofibril film of polyaniline. The experimental results demonstrated that the morphology of Pd nanoparticles strongly depended on the properties of conducting polymers and the conditions of electrochemical deposition. Two-dimensional nanostructures composed of flower-like (consisting of staggered nanosheets) or pinecone-like Pd nanoparticles were successfully synthesized. They can be used as substrates for surface-enhanced Raman scattering after partly decomposing the polymer components by heating in air, and the enhancement factor of the substrate composed of flower-like Pd nanoparticles was measured to be as high as 105 for 4-mercaptopyridine.  相似文献   

19.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

20.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号