首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The activity of the catalytic system NiBr2(PPh3)2/Zn/PhI in polymerization of butyl acrylate and butyl methacrylate and in copolymerization of butyl methacrylate with styrene was examined.  相似文献   

2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
This study investigates the degradation behavior of poly(n‐butyl methacrylate) ( p(nBMA) ), poly(tert‐butyl methacrylate) ( p(tBMA) ), and poly(hexafluoro butyl methacrylate) ( p(HFBMA) ) on a molecular level under extreme environmental conditions. The polymers chosen are readily applicable in the formulation of surface coatings and were degraded under conditions which replicated the harsh Australian climate, in which surface coatings may reach temperatures of up to 95 °C and are exposed to broad‐spectrum UV radiation of up to 1 kW m?2. The degradation profiles were mapped with high‐resolution electrospray ionization mass spectrometry (ESI‐MS) with a LCQ quadrupole ion trap mass analyzer, with the peak assignments confirmed to within 3 ppm using ESI‐MS with a LTQ‐Orbitrap mass detector. It was found that in all the butyl ester polymers analyzed herein—regardless of their tertiary side‐chain structure—the loss of the butyl ester group and subsequent formation of acid side groups are a component of the overall degradation pathway of poly(butyl methacrylate)s under these harsh conditions. However, it is also demonstrated that the magnitude of this pathway is intimately linked to the side‐chain structure with the propensity for degradation decreasing in the order p(tBMA) > p(nBMA) > p(HFBMA) . The degradation mechanisms identified in this study, in combination with the previous end‐group degradation studies of poly(methyl methacrylate) and poly(n‐butyl acrylate), have allowed a much deeper understanding of the molecular degradation behavior of poly(acrylate)s and poly(methacrylate)s in an extreme natural environment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The structure and hydrogen bonding of water in the vicinity of a thin film of a sulfobetaine copolymer (poly[(N,N-dimethyl-N-(3-sulfopropyl)-3'-methacrylamidopropanaminium inner salt)-ran-(butyl methacrylate)], poly(SPB-r-BMA)), were analyzed with band shapes of O-H stretching of attenuated total reflection infrared (ATR-IR) spectra. The copolymer could be cast as a thin film, of approximate thickness 10 microm, on a ZnSe crystal for the ATR-IR spectroscopy. At an early stage of sorption of water into the polymer film, the O-H stretching band of the IR spectra for the water incorporated in the film was similar to that for free water. This is consistent with the tendency for another zwitterionic polymeric material, poly[(2-methacryloyloxyethylphosphorylcholine)-ran-(butyl methacrylate)] (poly(MPC-r-BMA). It is, however, contradictory to the drastic change in the O-H stretching band for water incorporated into films of polymers such as poly(2-hydroxyethyl methacrylate), poly(methyl methacrylate) and poly(butyl methacrylate). These results suggest that polymers with a zwitterionic structure do not significantly disturb the hydrogen bonding between water molecules incorporated in the thin films. The investigation into the blood-compatibility of both the poly(SPB-r-BMA) and the poly(MPC-r-BMA) films indicate a definite correlation between the blood-compatibility of the polymers and the lack of effect of the polymeric materials on the structure of the incorporated water.  相似文献   

5.
丙烯酸酯和甲基丙烯酸酯基团转移共聚研究   总被引:1,自引:0,他引:1  
研究了三种丙烯酸酯分别和四种甲基丙烯酸酯的基团转移共聚,用1H NMR法测定共聚物组成,扩展的Kelen Tudos法测定竞聚率,结果为γMA=923、γMMA=006;γEA=1415、γMMA=001;γBA=751、γMMA=002;γMA=1441、γEMA=001;γMA=1396、γBMA=023;γMA=866、γi BMA=008,表明基团转移聚合同阴离子聚合有明显的相似之处.  相似文献   

6.
In situ Fourier transform near infrared (FTNIR) spectroscopy was successfully used to monitor monomer conversion during copper mediated living radical polymerization with N‐(n‐propyl)‐2‐pyridylmethanimine as a ligand. The conversion of vinyl protons in methacrylic monomers (methyl methacrylate, butyl methacrylate, and N‐hydroxysuccinimide methacrylate) to methylene protons in the polymer was monitored with an inert fiber‐optic probe. The monitoring of a poly(butyl methacrylate‐b‐methyl methacrylate‐b‐butyl methacrylate) triblock copolymer has also been reported with difunctional poly(methyl methacrylate) as a macroinitiator. In all cases FTNIR results correlated excellently with those obtained by 1H NMR. On‐line near infrared (NIR) measurement was found to be more accurate because it provided many more data points and avoided sampling during the polymerization reaction. It also allowed the determination of kinetic parameters with, for example, the calculation of an apparent first‐order rate constant. All the results suggest that FTNIR spectroscopy is a valuable tool to assess kinetic data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4933–4940, 2004  相似文献   

7.
Methyl methacrylate, benzyl methacrylate, butyl methacrylate, and methacrylic acid can be polymerized by 1, 2, 2-tetraphenyl-1, 2-diphenoxyethane (TPPA), 1, 1, 2, 2-tetraphenyl-1, 2-bis-(trimethylsiloxy) ethane (TPSA), and 1, 1, 2, 2-tetraphenyl-1, 2-dicyanoethane (TPCA) (1–3). The polymerization with these initiators is characterized by three steps; in the first period oligomers from MMA and initiator radicals are formed by primary radical termination.  相似文献   

8.
Polypropylene/poly(butyl methacrylate)(PP/PBMA) blends were prepared by diffusion and subsequent polymerization of butyl methacrylate(BMA) in commercial isotactic polypropylene(iPP) pellets.The diffusion kinetics,diametrical distribution of PBMA in a pellet and phase morphology of a typical PP/PBMA blend were investigated.  相似文献   

9.
The amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(acrylic acid)/polystyrene) (P(MMA‐co‐BIEM)‐g‐(PAA/PS)) were synthesized successfully by the combination of single electron transfer‐living radical polymerization (SET‐LRP), single electron transfer‐nitroxide radical coupling (SET‐NRC), atom transfer radical polymerization (ATRP), and nitroxide‐mediated polymerization (NMP) via the “grafting from” approach. First, the linear polymer backbones poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (P(MMA‐co‐BIEM)) were prepared by ATRP of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) and subsequent esterification of the hydroxyl groups of the HEMA units with 2‐bromoisobutyryl bromide. Then the graft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐poly(t‐butyl acrylate) (P(MMA‐co‐BIEM)‐g‐PtBA) were prepared by SET‐LRP of t‐butyl acrylate (tBA) at room temperature in the presence of 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO), where the capping efficiency of TEMPO was so high that nearly every TEMPO trapped one polymer radicals formed by SET. Finally, the formed alkoxyamines via SET‐NRC in the main chain were used to initiate NMP of styrene and following selectively cleavage of t‐butyl esters of the PtBA side chains afforded the amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(t‐butyl acrylate)/polystyrene) (P(MMA‐co–BIEM)‐g‐(PtBA/PS)). The self‐assembly behaviors of the amphiphilic heterograft copolymers P(MMA‐co–BIEM)‐g‐(PAA/PS) in aqueous solution were investigated by AFM and DLS, and the results demonstrated that the morphologies of the formed micelles were dependent on the grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Chromatographic separation of copolymers depending on the chemical composition was studied by a solvent gradient method using liquefied carbon dioxide (CO2) as an adsorption promoting solvent. As the high polar stationary phase, non-bonded silica gel, crosslinked acrylamide (AA) gel and crosslinked acrylonitrile (AN) gel were utilized. All columns showed the typical normal phase type of adsorption. Polymeric stationary phases showed the higher sample recovery for styrene-methyl methacrylate (St-MMAs) copolymers, indicating suitability for quantitative analyses. The separations of butyl methacrylate (BMA)-methyl methacrylate, and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate (FBMA)-methy methacrylate copolymers were also carried out, and the latter copolymers were separated based on the CO2-philicity with acrylonitrile column.  相似文献   

11.
The synthesis of ω‐ and α,ω‐telechelics with sulfonate end groups through the sulfoalkylation of homopolymers and block copolymers of n‐butyl methacrylate and t‐butyl methacrylate with 1,3‐propane sultone is described. The polymerizations are initiated in tetrahydrofuran at −78 °C with either 1,1‐diphenyl‐3‐methylpentyllithium or dilithium 1,1,4,4‐tetraphenylbutane to obtain monofunctional or difunctional polymethacrylate anions, respectively. Narrow molecular weight distributions are obtained for the homopolymers and copolymers in the presence of LiCl in a 10/1 ratio relative to the initiator. The direct reaction of the poly(n‐butyl methacrylate) anions with the sultone results in low functionalization levels: f = 0.24–0.29 for the monofunctional anions and f = 0.32–0.35 for the difunctional anions. The reaction of the poly(t‐butyl methacrylate) anions or end‐capping of the poly(n‐butyl methacrylate) anions with t‐butyl methacrylate units before sulfoalkylation yields telechelics with f = 0.81–1.0 for the monofunctional anions and f = 1.74–1.94 for the difunctional anions. The telechelic polymers, purified by ultrafiltration, have been characterized by size exclusion chromatography, Fourier transform infrared, and 1H NMR spectroscopy. The yield of the sulfoalkylation reactions, determined by colorimetric analysis of a complex formed with methylene blue, is in good agreement with the results obtained by nonaqueous titration of the acidified telechelics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3711–3721, 2000  相似文献   

12.
Successful statistical copolymerization of an alpha-olefin (1-octene) with an acrylate (butyl acrylate, BA) and with a methacrylate (methyl methacrylate, MMA), employing reversible addition-fragmentation chain transfer (RAFT) mediated polymerization has been accomplished  相似文献   

13.
<正>A simple and effective way to prepare poly(acrylate)s,such as poly(methacrylate),poly(butyl acrylate) and poly(butyl methacrylate),has been achieved by using the single component aluminum-based compounds,such as modified methylaluminoxane(MMAO),triisobutylaluminium(TIBA) and triethylaluminium(TEA) as initiators.Effective initiations and high molecular weight polymers with unimodal molecular weight distributions could be easily obtained by varying the reaction parameters of systems under mild conditions.Although these aluminum compounds were inefficient initiators for methyl methacrylate(MMA) polymerization,they exhibited remarkable catalytic activity for butyl methacrylate(BMA) polymerization,affording high molecular weight poly(BMA)s.  相似文献   

14.
On the basis of our own experimental and some literature data, the contributions of slow relaxation mechanisms to the shear modulus, (GeN — Ge), and the parameter C2 of the Mooney-Rivlin equation have been examined for lightly crosslinked poly(butyl methacrylate), poly(butyl acrylate), poly(2-hydroxyethyl methacrylate), and some rubber networks. For the rubbers, increasing degree of crosslinking caused a decrease in GeN — Ge and an increase in C2; for the other networks, both GeN — Ge and C2 diminished with increasing crosslinking. The effectiveness of the crosslinking polymerization, and also the absolute values of the physical crosslinking degree, decreased in the order of poly(2-hydroxyethyl methacrylate), poly(butyl methacrylate), and poly(butyl acrylate). The values of the equilibrium compliances J of the networks studied, obtained by various methods, have also been compared, and good agreement has been found.  相似文献   

15.
含疏水链节的聚N-异丙基丙烯酰胺共聚物的温敏性   总被引:1,自引:0,他引:1  
采用溶液聚合法合成了一系列N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯或甲基丙烯酸丁酯的无规共聚物,用浊度观测法和光散射法测定了不同共聚物水溶液的温敏相转变行为.结果表明:所得共聚物的低临界溶解温度(LCST)均低于均聚物PNIPAM的,酯类单体的结构和含量对共聚物的LCST有显著影响,其中酯基上的烷基对共聚物LCST的影响能力大于丙烯酸酯α位上的烷基,前者对增大共聚物的疏水性有更大贡献.通过NIPAM与特定丙烯酸酯单体进行无规共聚可以合成转变温度低于PNIPAM均聚物且具有预设LCST数值的水溶性温敏聚合物.  相似文献   

16.
A method for determination of residual acrylonitrile, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethyl hexyl acrylate, styrene and 2-methyl styrene monomers in polymer emulsions by head space gas chromatography mass spectrometry. Monomers were separated on DB-624 column and detected by MS under SIM (Selected ion monitoring) mode. The linear regression analysis data for the calibration curve for all monomers showed a good linear relationship with a regression coefficient of 0.99 over the concentration range of 5.3 mg/kg to 1172 mg/kg. The limit of detection and limit of quantification for the target analytes were in the range from 0.4 to 2.9 mg/kg and 0.9 to 7.3 mg/kg respectively.  相似文献   

17.
利用传统自由基聚合法,在四氢呋喃溶液中自由基引发聚合甲基丙烯酸丁酯单体而得到ω-羧基-甲基丙烯酸丁酯低聚物(CTBMA)(分子量在1500左右);利用CTBMA末端酯基的反应特性,在二氧六环/水/KOH混合溶液中皂化CTBMA,使之转化为α,ω-羧基甲基丙烯酸丁酯低聚物(di-CTBMA);研究了溶剂的类别、反应时间等反应条件对皂化产物结构的影响;利用MALDI-TOF-MS及LSIMS对皂化各阶段产物进行了分析监测.实验表明,在适当的皂化条件下,CTBMA皂化时主要为末端酯基转化为羧基,相应得到的产物di-CTMBA具有很好的结构特性,其官能团度(functionality)接近2.  相似文献   

18.
The atom transfer radical polymerization of cyclohexyl methacrylate (CHMA) is reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalytic system with ethyl 2‐bromoisobutyrate as the initiator in bulk and different solvents (25 vol %) at 40 °C. The polymerization of CHMA in bulk resulted in a controlled polymerization, although the concentration of active species was relatively elevated. The addition of a solvent was necessary to reduce the polymerization rate, which was dependent on the dipole moment. Well‐controlled polymers were obtained in toluene, diphenyl ether, and benzonitrile solutions. Poly(cyclohexyl methacrylate) as a macroinitiator was used to synthesize the poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) block copolymer, which allowed a demonstration of its living character. In addition, two difunctional initiators, 1,4‐bis(bromoisobutyryloxy) benzene and 1,2‐bis(bromoisobutyryloxy) ethane, were used to initiate the atom transfer radical polymerization of CHMA. The experimental molecular weights of the obtained polymers were very close to the theoretical ones. These, along with the relative narrow molecular weight distributions, indicated that the polymerization was living and controlled. For confirmation, two different poly(tert‐butyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) triblock copolymers were also synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 71–77, 2005  相似文献   

19.
丙烯腈和(甲基)丙烯酸酯基团转移共聚合的竞聚率   总被引:4,自引:0,他引:4  
研究了丙烯腈(AN)和甲基丙烯酸甲酯(MMA)、乙酯(EMA)、丁酯(BMA)、丙烯酸丁酯(BA)和顺丁烯二酸二丁酯(DBM)等5种酯类单体的基团转移无规共聚.用Kelen Tudus法测定了二元共聚体系的竞聚率,分别为rAN=1022、rMMA=077、rAN=568、rEMA=016、rAN=859、rBMA=009、rAN=408、rBA=006;rAN=138,rDBM=006.发现竞聚率,单体组分对聚合速率的影响等都和阴离子共聚类似.  相似文献   

20.
New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号