首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Dominik Zimmermann  Christian Miehe 《PAMM》2007,7(1):1090101-1090102
The application of configurational forces in h -adaptive strategies for fracture mechanics and inelasticity is investigated. Starting from a global Clausius-Planck inequality, dual equilibrium conditions are derived by means of a Coleman-type exploitation method. The remaining reduced dissipation inequality is used for the derivation of evolution equations for the internal variables. In fracture mechanics, crack loading conditions as well as a normality rule for the crack propagation are obtained. In the discrete setting, the crack propagation is governed by a configurational-force-driven update of the geometry model. The material balance equation is used to set up a h -adaptive refinement indicator. A relative global criterion is defined used for the decision on mesh refinement. In addition, a criterion on the element level is evaluated controlling the local refinement procedure. The capability of the proposed procedures is demonstrated by means of numerical examples. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We introduce a consistent variational framework for inelasticity at finite strains, yielding dual balances in physical and material space as the Euler equations. The formulation is employed for the simultaneous usage of configurational forces as both driving forces for crack propagation as well as h-adaptive mesh refinement. The theoretical basis builds upon a global balance of internal and external power, where the mechanical response is exclusively governed by two scalar functions, the free energy function and a dissipation potential. The resulting variational structure is exploited in the context of fracture mechanics and yields evolution equations for internal variables. In the discrete setting, we present a geometry model fully separated from the finite element mesh structure that represents structural changes of the material configuration due to crack propagation. Advanced meshing algorithms provide an optimal discretization at the crack tip. Local and global criteria are obtained via error estimators based on configurational forces being interpreted as indicators of an energetic misfit due to an insufficient discretization. The numerical handling is decomposed into a staggered algorithm scheme for the dual set of equilibrium equations in material and physical space and efficient mesh generation tools. Exemplary numerical examples are considered to illustrate the method and to underline the effects of inelastic material behaviour in the presented context. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Ercan Gürses  Christian Miehe 《PAMM》2007,7(1):4030019-4030020
A variational formulation of quasi-static brittle fracture is considered and a new finite-element-based computational framework is developed for propagation of cracks in three-dimensional bodies. We outline a consistent thermodynamical framework for crack propagation in elastic solids and show that the crack propagation direction associated with the classical Griffith criterion is identified by the material configurational force which maximizes the local dissipation at the crack front. The evolving crack discontinuity is realized by the doubling of critical nodes and triangular interface facets of the tetrahedral mesh. The crucial step for the success of the procedure is its embedding into an r-adaptive crack-facet reorientation procedure based on configurational-force-based indicators in conjunction with crack front constraints. We further propose a staggered algorithm which minimizes the stored energy at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive definite subproblems with successively decreasing overall stiffness, providing a very robust algorithmic setting in the postcritical range. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A new approach for treating the mesh with Lagrangian scheme of finite volume method is presented. It has been proved that classical Lagrangian method is difficult to cope with large deformation in tracking material particles due to severe distortion of cells, and the changing connectivity of the mesh seems especially attractive for solving such issues. The mesh with large deformation based on computational geometry is optimized by using new method. This paper develops a processing system for arbitrary polygonal unstructured grid, the intelligent variable grid neighborhood technologies is utilized to improve the quality of mesh in calculation process, and arbitrary polygonal mesh is used in the Lagrangian finite volume scheme. The performance of the new method is demonstrated through series of numerical examples, and the simulation capability is efficiently presented in coping with the systems with large deformations.  相似文献   

5.
6.
Shape memory alloys show a very complex material behavior associated with a diffusionless solid/solid phase transformation between austenite and martensite. Due to the resulting (thermo-)mechanical properties – namely the effect of pseudoelasticity and pseudoplasticity – they are very promising materials for the current and future technical developments. However, the martensitic phase transformation comes along with a simultaneous plastic deformation and thus, the effect of functional fatigue. We present a variational material model that simulates this effect based on the principle of the minimum of the dissipation potential. We use a combined Voigt/Reuss bound and a coupled dissipation potential to predict the microstructural developments in the polycrystalline material. We present the governing evolution equations for the internal variables and yield functions. In addition, we show some numerical results to prove our model's ability to predict the shape memory alloys' complex inner processes. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This contribution is concerned with a parameter-free approach to computational shape optimization of mechanically-loaded structures. Thereby the term ’parameter-free’ refers to approaches in shape optimization in which the design variables are not derived from an existing CAD-parametrization of the model geometry but rather from its finite element discretization. One of the major challenges in using this type of approach is the avoidance of oscillating boundaries in the optimal design trials. This difficulty is mainly attributed to a lack of smoothness of the objective sensitivities and the relatively high number of design variables within the parameter-free regime. To compensate for these deficiencies, Azegami introduced the concept of the so-called traction method, in which the actual design update is deduced from the deformation of a fictitious continuum that is loaded in proportion to the negative shape gradient. We investigate a discrete variant of the traction method, in which the design sensitivities are computed with respect to variations of the design nodes for a given finite element mesh rather than on the abstract level by means of the speed method. Moreover, the design update process is accompanied by adaptive mesh refinement based on discrete material residual forces. Therein, we consider radaptive node relocation as well as hadaptive mesh refinement. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Andrzej Myśliński 《PAMM》2007,7(1):2060005-2060006
This paper deals with the numerical solution of a topology and shape optimization problems of an elastic body in unilateral contact with a rigid foundation. The contact problem with the prescribed friction is considered. The structural optimization problem consists in finding such shape of the boundary of the domain occupied by the body that the normal contact stress along the contact boundary of the body is minimized. In the paper shape as well as topological derivatives formulae of the cost functional are provided using material derivative and asymptotic expansion methods, respectively. These derivatives are employed to formulate necessary optimality condition for simultaneous shape and topology optimization. Level set based numerical algorithm for the solution of the shape optimization problem is proposed. Level set method is used to describe the position of the boundary of the body and its evolution on a fixed mesh. This evolution is governed by Hamilton – Jacobi equation. The speed vector field driving the propagation of the boundary of the body is given by the shape derivative of a cost functional with respect to the free boundary. Numerical examples are provided. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The moving point algorithm of Garder, Peaceman & Pozzi (SPEJ,March 1964, 26–36) will solve high Peclet number, multi-dimensional,convection-diffusion equations without numerical diffusion orspurious oscillations. The method uses a moving set of pointstogether with a fixed Eulerian mesh and avoids the mesh tanglingproblems of many moving mesh methods. However, numerical resultsof Price, Cavendish & Varga (SPEJ, Sept. 1968, 293–303)indicate that with a fixed number of moving points per meshcell the algorithm does not converge under mesh refinement.These authors also show, for fixed mesh lengths and a fixednumber of moving points per cell, that the moving point methodis more accurate than conventional fixed-mesh algorithms ifthe Peclet number is sufficiently large. We introduce and analysis a moving point algorithm which weprove to converge for arbitrary Peclet numbers. Numerical resultsdemonstrating the convergence and the accuracy of the movingpoint method relative to standard finite difference algorithmsare described.  相似文献   

11.
该文在Bakhvalov-Shishkin网格上求解具有左边界层或右边界层的对流扩散方程,并采用差分进化算法对Bakhvalov-Shishkin网格中的参数进行优化,获得了该网格上具有最优精度的数值解.对三个算例进行了数值模拟,数值结果表明:采用差分进化算法求解具有较高的计算精度和收敛性,特别是边界层的数值解精度明显...  相似文献   

12.
Using a self-similar variables, an asymptotic investigation is carried out into the stress fields and the rates of creep deformations and degree of damage close to the tip of a tensile crack under creep conditions in a coupled (creep - damage) plane formulation of the problem. It is shown that a domain of completely damaged material (DCDM) exists close to the crack tip. The geometry of this domain is determined for different values of the material parameters appearing in the constitutive relations of the Norton power law in the theory of steady-state creep and a kinetic equation which postulates a power law for the damage accumulation. It is shown that, if the boundary condition at the point at infinity is formulated as the condition of asymptotic approximation to the Hutchinson–Rice-Rosengren solution [Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968;16(1):13–31; Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids. 1968;16(1):1–12], then the boundaries of the DCDM, which are defined by means of binomial and trinomial expansions of the continuity parameter, are substantially different with respect to their dimension and shape. A new asymptotic of the for stress field, which determines the geometry of the DCDM and leads to close configurations of the DCDM constructed using binomial and trinomial asymptotic expansions of the continuity parameter, are established by an asymptotic analysis and a numerical solution of the non-linear eigenvalue problem obtained.  相似文献   

13.
The layered elastic solid method (LESM), a modified elastic solid method (ESM) was put forward in the present study. In LESM, the computational zone is divided into several layers and material properties of these layers, which stay a certain value in ESM, are changed with mesh deformation. The deformation capability of mesh in LESM is better than ESM and the quality of the mesh generated by LESM is superior to that generated by ESM when they undergo the same deformation. In ESM, the main influence factors on mesh quality and deformation capability are Poisson’s ratio and single-step rotation angle. In LESM, mesh quality and deformation capability reach a largest value with an increase in Young’s modulus. Meanwhile, the mesh can achieve a larger deformation capability when single-step rotation angle is 0.25°. Finally, numerical simulation on a two-dimensional aerofoil using LESM was carried out. It is found that the results of LESM show a better agreement with experiment results.  相似文献   

14.
In solid metal forming processes, such as forging, large distortions in the material present challenging problems for numerical simulation using grid based methods. Computations invariably fail after some level of mesh distortion is reached unless suitable re-meshing is implemented to cope with the mesh distortion arising from the material deformation. The issue of mesh distortion and the subsequent re-meshing are topics of much research for grid based methods. These problems can be overcome by using a mesh-less numerical framework. In this paper, the application of a mesh-less method called Smoothed Particle Hydrodynamics (SPH) for modelling three-dimensional complex forging processes is demonstrated. It is shown that SPH is a useful simulation method for obtaining insights into the material deformation and flow pattern during forging of realistic industrial components. The effect of process parameters and material properties on the quality of the forged component is evaluated via SPH simulations. This includes the determination of forging force required for adequate die filling which is an important criterion for die designs. Material hardening, controlled by the degree of heat treatment, is found to have a profound effect on the material deformation pattern and the final product. Forging defects such as incomplete die filling, asymmetry in forged components, flashing and lap formation are shown to be predicted by SPH. SPH can thus potentially be used both for assessment of the quality of forged products and evaluation of prototype forging system designs.  相似文献   

15.
In this paper, the three-dimensional automatic adaptive mesh refinement is presented in modeling the crack propagation based on the modified superconvergent patch recovery technique. The technique is developed for the mixed mode fracture analysis of different fracture specimens. The stress intensity factors are calculated at the crack tip region and the crack propagation is determined by applying a proper crack growth criterion. An automatic adaptive mesh refinement is employed on the basis of modified superconvergent patch recovery (MSPR) technique to simulate the crack growth by applying the asymptotic crack tip solution and using the collapsed quarter-point singular tetrahedral elements at the crack tip region. A-posteriori error estimator is used based on the Zienkiewicz–Zhu method to estimate the error of fracture parameters and predict the crack path pattern. Finally, the efficiency and accuracy of proposed computational algorithm is demonstrated by several numerical examples.  相似文献   

16.
17.
B. Eidel  F. Gruttmann 《PAMM》2002,1(1):185-186
We consider a formulation of associative isotropic J2‐elastoplasticity at finite inelastic strains and aspects of its numerical implementation. The essential ingredients include the multiplicative decomposition of the deformation gradient in elastic and inelastic parts, the definition of a convex elastic domain in stress space and a material representation of the constitutive equations for general non‐Cartesian coordinate charts. On the numerical side we propose a stress update algorithm for elasto‐plastic response, including isotropic hardening. The finite element formulation is based on assumed strain and enhanced strain variational principles, for a complete outline see [3]. Remarkably the formulation is very similar to the case of infinitesimal plasticity: (i) The scheme of linear return mapping algorithm takes the form of standard return mapping of the infinitesimal theory for the case of isotropic elastic response. (ii) The algorithmic elastoplastic moduli have a similar structure as in the linear case. Together with an exact fulfillment of plastic incompressibility by means of a simple correction one achieves an advantageously efficient finite element formulation. Its performance is documented by a numerical example.  相似文献   

18.
Arun Raina  Christian Linder 《PAMM》2010,10(1):681-684
The emphasis of this work lies in the development of a numerical method which is capable of representing the complex physical phenomena arising in the case of crack branching in brittle materials. In particular, the formation of crack micro-branches needs to be accounted for when it comes to the prediction of the propagation pattern of crack macro-branches which will ultimately lead to the failure of the material. This is achieved by numerically modeling the failure zones within the individual finite elements based on the concept of the embedded finite element method, where all the information with regard to the geometry of the failure zone is stored locally on the element level leading to a very efficient methodology capable of discretely resolving the failure zone. The main feature of the current work is the redundancy of the branching criterion based on crack tip velocity and that both, micro- as well as macro-branches can be modeled. Whether a micro-crack develops into a macro-crack solely depends on the local state of the material as it is outlined based on the application of the proposed numerical scheme on a rectangular block with a pre-existing notch set under tension. A comparison of the oscillatory behavior of the obtained crack tip velocity every time a micro-crack develops with experimental results from the literature is provided. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
求解流固耦合问题的一种四步分裂有限元算法   总被引:1,自引:1,他引:0  
基于arbitrary Lagrangian Eulerian (ALE) 有限元方法,发展了一种求解流固耦合问题的弱耦合算法.将半隐式四步分裂有限元格式推广至求解ALE描述下的Navier-Stokes(N-S)方程,并在动量方程中引入迎风流线(streamline upwind/Petrov-Galerkin, SUPG)稳定项以消除对流引发的速度场数值振荡;采用Newmark-β法对结构方程进行时间离散;运用经典的Galerkin有限元法求解修正的Laplace方程以实现网格更新,每个计算步施加网格总变形量防止结构长时间、大位移运动时的网格质量恶化.运用上述算法对弹性支撑刚性圆柱体的流致振动问题进行了数值模拟,计算结果与已有结果相吻合,初步验证了该算法的正确性和有效性.  相似文献   

20.
This paper describes an application of augmented Lagrangiantechniques to the numerical solution of quasistatic flow problemsin incompressible viscoplasticity, focusing on cases where theinternal viscoplastic dissipation potential is not a differentiablefunction of the material deformation rate. The stresses of elasticorigin are neglected, and the variational formulation of theseproblems is approximated via low-order mixed finite elements,which reduces the original problems to the constrained minimizationof a convex, but possibly not differentiable functional. Convergenceresults are proved or recalled, both for the finite elementapproximation and for the augmented Lagrangian algorithm. Adetailed study of the local minimization problems which occurin the augmented Lagrangian decomposition of the above problemsis also presented, together with several numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号