首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two independent field trials were performed in Guizhou and Hunan, China in 2013 to investigate the dissipation and residue levels of saisentong in tobacco and soil. A novel and accurate method using high-performance liquid chromatography with diode array detection was developed and validated to determine saisentong levels in tobacco and soil. The average recovery of saisentong at fortification levels of 0.5, 2.5, 5.0 and 50.0 mg kg?1 in fresh tobacco ranged from 75.92 to 107.40% with a relative standard deviation (RSD) of 0.94 to 7.55%, that at fortification levels of 0.5, 2.0 and 5.0 mg kg?1 in tobacco powder ranged from 74.96 to 94.43% with a relative standard deviation (RSD) of 4.38 to 8.14%, and that at fortification levels of 0.1, 0.5 and 5.0 mg kg?1 in soil ranged from 86.90 to 100.0% with an RSD of 1.38 to 4.62%. The limit of detection (LOD) of saisentong was 0.15 mg?kg?1 in tobacco and 0.03 mg kg?1 in soil, and the limit of quantification (LOQ) was 0.5 mg kg?1 in tobacco and 0.1 mg kg?1 in soil, respectively. For field experiments, the half-lives of saisentong in tobacco from Guizhou and Hunan were 5.9 and 1.6 days, respectively; those in soil were 14.7 and 12.0 days, respectively. The results suggest that the saisentong dissipation curves followed the first-order kinetic. The terminal residues of saisengtong in tobacco ranged from 0.5 to 9.39 mg kg?1 at pre-harvest intervals (PHI) of 7, 14 and 21 days.  相似文献   

2.
In this study, an effective analytical method for simultaneous determination of thiamethoxam and its metabolite clothianidin in goji berry and soil was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The recoveries of the compounds in goji berry and soil at the levels of 0.005, 0.02, and 0.1 μg kg?1 were 84.7–98.9% and the relative standard deviations (RSDs) were 0.9–3.2%. The limits of detection (LOD) for both compounds in goji berry and soil matrices were 0.001 mg kg?1; the limits of quantification (LOQ) were 0.005 mg kg?1 for both compounds in two matrices. The dissipation and final residual experiments in 2016 with the commercial formulation of dinotefuran ? thiamethoxam 30% suspension concentrate (SC) was conducted in goji berries in northwest China (Qinghai, Gansu, Inner Mongolia, and Ningxia). Thiamethoxam was dissipated fast in goji plant ecosystem with half-lives were 1.08–1.01 and 2.04–4.25 days in goji berry and soil. The final residues of thiamethoxam were <0.005–0.382 and <0.005–1.120 mg kg?1 in goji berry and soil, respectively.  相似文献   

3.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method for the analysis of triallate residue in wheat and soil was developed and validated. Multi-walled carbon nanotubes were used as clean-up sorbent. The residual levels and dissipation rates of triallate in wheat and soil were determined by liquid chromatography–tandem mass spectrometry. The limit of quantification was established as 0.01, 0.02 and 0.05 mg kg?1 for soil, wheat and wheat plant samples, respectively. The average recoveries of triallate ranged from 77% to 108% at fortified levels of 0.01–0.5 mg kg?1 with relative standard deviations of 3.0–8.4% (n = 5). From residue trials at three geographical experimental plots in China, the results showed that the half-lives of triallate in soils were 1.13–1.63 days. For trials applied according to the label recommendation, the final residues of triallate in wheat at harvest time were all below 0.05 mg kg?1 (the maximum residue levels of China, Japan, Korea and the US).  相似文献   

4.
A modified QuEChERs method with liquid chromatography-tandem mass spectrometry for analysis of guadipyr residue and dissipation in rice matrices, paddy soil and paddy water was developed and validated. Mean recoveries and relative standard deviations in paddy soil, paddy water, rice plant, rice straw, rice hull and husked rice matrices at three spiking levels were 83.1–116.5% and 1.6–9.5%, respectively. The half-life of guadipyr was determined in 2 years at three different field sites in China via a dissipation experiment. The half-lives of guadipyr in paddy water were 0.22–0.37 days, 0.24–3.33 days in paddy soil and 0.44–1.90 days in rice plant. The terminal residues of guadipyr ranged from ND (concentrations of guadipyr were below limit of detection) to 50 μg kg?1 in paddy soil, 10–470 μg kg?1 in rice hull, ND70 μg kg?1 in husked rice and ND to 110 μg kg?1 in rice straw. The results would be helpful in fixing maximum residue limit of guadipyr, a new insecticide, in rice.  相似文献   

5.
The dissipation dynamics and final residues of flutriafol on tobacco plant and soil were studied under field conditions. The residues of flutriafol in soil, green tobacco leaves and cured tobacco leaves were extracted by ultrasound-assisted extraction, cleaned up by dispersive solid-phase extraction and detected by liquid chromatography with tandem mass spectrometry. The limits of detection of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.006, 0.033 and 0.033 mg·kg?1, respectively. The limits of quantification of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.02, 0.1 and 0.1 mg·kg?1, respectively. Recoveries were 72.9–102% with relative standard deviations of less than 12% in soil and tobacco matrix. For field experiments, the half-lives of flutriafol in soil and green tobacco leaves were 9.2–11.5 and 9.5–11.1 days, respectively. At harvest, the final residue levels of flutriafol in cured tobacco leaves collected 21 days after one application at the recommended dosage were below 2.0 mg/kg. The maximum residue limit maximum residue limit (MRL) for flutriafol in tobacco has not yet been established in any countries. The data could help the Chinese Government to establish the MRL of flutriafol in tobacco and provide guidance on the proper use of flutriafol.  相似文献   

6.
A field experiment was conducted to evaluate clofentezine residue levels and dissipation trend in tangerine and soil for the safe application of clofentezine. A modified QuEChERS-HPLC-UVD method was developed to analyse clofentezine in tangerine and soil. Tangerine samples were homogenised and extracted by acetonitrile and then cleaned up with dispersive solid phase extraction (dSPE) by primary and secondary amine (PSA) and C18. Clofentezine residue was determined by high-performance liquid chromatography (HPLC) with a UV detector (UVD) at the wavelength of 268 nm. The presented method achieved the good linear relationship within the range from 0.05 to 5.0 mg kg?1 for clofentezine (R2 > 0.998). At the fortification levels of 0.05, 0.50 and 1.00 mg kg?1 in tangerine pulp, tangerine peel and soil, recoveries ranged from 75.9% to 117.7% with relative standard deviations (RSD) less than 8.2%. In the supervised field trials, the half-lives of clofentezine in tangerine and soil were approximately 11.3 and 8.6 days, respectively. At pre-harvest interval of 21 days, the residue of clofentezine in tangerine was below the maximum residue limits (MRL) (0.5 mg kg?1). Clofentezine (Water Dispersible Granule, 80%) was recommended to be sprayed twice and the recommended dosage ranged from 250 to 375 mg kg?1.  相似文献   

7.
A QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for the determination of benazolin-ethyl and quizalofop-p-ethyl in rape and soil by high-performance liquid chromatography-tandem mass spectrometry has been developed in this study. The residue and dissipation of benazolin-ethyl and quizalofop-p-ethyl in rape and soil were determined with the developed method. The half-lives of benazolin-ethyl in rape straw and soil were 3.7–5.1 days and 14.3–26.3 days, respectively. The half-lives of quizalofop-p-ethyl in rape straw and soil were 5.0-6.1 days and 0.3–9.7 days, respectively. The residue of benazolin-ethyl and quizalofop-p-ethyl in rapeseed and soil were below the detection limit (i.e., 0.5?mg?kg?1, the maximum residue level of European Union for quizalofop-p-ethyl).  相似文献   

8.
The combination formulation of fluopyram and tebuconazole is used for control of fungal diseases and post-harvest disease management of mango. Dissipation study of the fungicides on mango was carried out after giving applications of fluopyram +tebuconazole at the standard and double doses of 150 + 150 and 300 + 300 g active ingredient hectare?1 (g a.i. ha?1), respectively. Fluopyram residues on mango were 0.8 and 0.9 mg kg?1 and tebuconazole residues, 0.308 and 0.4 mg kg?1 after three and four applications at the standard dose. At double dose treatment the residue levels for fluopyram were 1.266 and 1.453 mg kg?1 and tebuconazole, 0.681 and 0.853 mg kg?1, respectively. Residue dissipation in mango fruits followed first order rate kinetics and the half-life (DT50) were 4.3–5.4 days for fluopyram and 3–3.8 days for tebuconazole. Faster dissipation of the fungicides was observed after the fourth treatment which directly correlated to higher rainfall during that period. The combined residues of fluopyram+tebuconazole reduced to below their maximum residue limits (MRLs) within 36–38 days. Dietary risk assessment on human health indicated that fluopyram and tebuconazole application to mango is unlikely to pose risk to human beings. This study gives valuable information on the judicious use of this combination formulation on mango, especially towards harvest.  相似文献   

9.
A high-performance liquid chromatography with ultraviolet (HPLC-UV) detection method after derivatisation was developed for the first time for the novel fungicide zinc thiazole residue in tobacco samples. Field trials in two different locations were conducted to investigate the dissipation and residue of zinc thiazole in tobacco leaves and soil. The average recoveries of zinc thiazole were in the range of 82.5%–93.9% with relative standard deviations (RSDs) of 1.2%–9.1%. The zinc thiazole showed a rapid dissipation rate in fresh tobacco leaves with the half-lives of 1.1–1.6 days. The terminal residues of zinc thiazole in cured tobacco leaves and soil were 2.8–28.0 mg kg?1and <0.05 mg kg?1, respectively. The results could be used to establish the maximum residue limits (MRLs) and provide guidance for the scientific use of zinc thiazole in agriculture.  相似文献   

10.
In this study, a rapid and sensitive method was developed for determining fenamidone and propamocarb hydrochloride residues in vegetables and soil by ultra-performance liquid chromatography-tandem mass spectrometry. The dissipation dynamics of fenamidone and propamocarb hydrochloride in pepper and soil was investigated in Beijing, Henan and Shandong provinces. The target compounds were extracted with methanol and cleaned with dispersive solid phase extraction using primary secondary amine. Two pairs of precursor product ion transitions for fenamidone and propamocarb hydrochloride were measured and evaluated. Average recoveries of fenamidone in potato, tomato, cabbage, pepper and soil at three levels (10, 100 and 1000 μg kg?1) ranged from 76.91% to 107.31% with relative standard deviations (RSDs) from 2.74% to 10.87% (n = 15). The average recoveries of propamocarb hydrochloride ranged from 74.84% to 97.96% with RSDs from 2.43% to 16.16% (n = 15). The limits of detection (LODs) for fenamidone in each matrix were 0.131–0.291 μg kg?1, and the limits of quantification (LOQs) were 0.436–0.970 μg kg?1. The LODs for propamocarb hydrochloride were 0.125–0.633 μg kg?1, and the LOQs were 0.417–2.11 μg kg?1. The results also showed that the dissipation of fenamidone and propamocarb hydrochloride in pepper and soil followed first-order kinetics model more than that of bi-exponential models. The half-lives of propamocarb hydrochloride were 6.90–15.78 days in pepper and 13.56–23.02 days in soil. The half-lives of fenamidone were 7.48–11.29 days in pepper and 35.18–42.78 days in soil.  相似文献   

11.
An analytical method for the determination of buprofezin residues in cabbage and cauliflower was developed and validated using gas chromatography with ion trap mass spectrometry. The analyte protectant d ‐sorbitol was used at a concentration level of 0.5 mg mL?1 in acetonitrile instead of in matrix for constructing the calibration curves of the buprofezin standard. The average recoveries ranged from 91.3 to 96.8%, with an RSD of ≤2.7%. The limits of detection and quantitation of the method in cabbage and cauliflower were 1.3, 1.7 and 4.3, 6.2 μg kg?1, respectively. The residual levels and dissipation kinetics of buprofezin 25% wettabe powder in cabbage and cauliflower cultivated under open field conditions was investigated at the single (T1) and double (T2) recommended rates of application. Half‐life periods were found to be 1.73 and 2.1 days in cabbage, whereas in cauliflower, these values were 1.85 and 2.36 days at T1 and T2, respectively. Based on the dissipation study, and the maximum residue limit value of 0.05 mg kg?1, the proposed pre‐harvest interval of buprofezin in cabbage was 3–6 days and that in cauliflower was 4–10 days. The results showed that buprofezin is safe for application at both recommended application rates.  相似文献   

12.
Persistence and dissipation of fluopicolide and propamocarb were studied on cabbage and soil as per good agricultural practices over a period of 2 years. A modified QuEChERS analytical method in conjunction with gas chromatography (GC) and GC–mass spectrometry was used for analysis of fluopicolide and its metabolite, 2,6-dichlorobenzamide, and propamocarb in cabbage and soil. The results of the method validation were satisfactory with recoveries within 74.5–100.81% and relative standard deviations 4.8–13.9% (n = 6). The limit of detection (LOD) and limit of quantification (LOQ) of both fluopicolide and 2,6-dichlorobenzamide were 0.003 µg mL?1 and 0.01 mg kg?1, respectively. The LOD and LOQ of propamocarb were 0.03 µg mL?1 and 0.1 mg kg?1, respectively. During 2013, the initial residue deposits of fluopicolide on cabbage were 0.60 and 1.48 mg kg?1 from treatments at the standard and double doses of 100 and 200 g a.i. ha?1 which dissipated with the half-life of 3.4 and 3.7 days. During 2014, the residues were 0.49 and 1.13 mg kg?1 which dissipated with the half-life of 4.2 and 5.1 days. Propamocarb residues on cabbage were 5.36 and 12.58 mg kg?1 in the first study (2013) and 4.85 and 10.26 mg kg?1 in the second study (2014) from treatments at the standard and double doses of 1000 and 2000 g a.i. ha?1, respectively. The residues dissipated with the half-life of 4–5.5 days. The preharvest interval, the time required for fluopicolide + propamocarb residues to dissipate below the maximum residue limits (notified by EU) at the standard dose, was 11.8 and 14 days during 2013 and 2014. Residue of 2,6-dichlorobenzamide was always <LOQ in cabbage. Residues of fluopicolide, 2,6-dichlorobenzamide and propamocarb were <LOQ in field soil at harvest.  相似文献   

13.
A method was developed and validated for the determination of residues of the organophosphorus nematicide fosthiazate in soil and water by using reversed-phase liquid chromatography with UV detection. Good recoveries (>85%) of fosthiazate residues were obtained from water samples (drinking water, groundwater, and liquid chromatography water) after passage of 0.5-2 L water through solid-phase extraction (SPE) C-18 cartridges and subsequent elution with ethyl acetate. Residues in soil were extracted with methanol-water (75 + 25, v/v) on a wrist-action shaker, and the extract was cleaned up on C-18 SPE cartridges before analysis. The method was validated by analysis of a range of soils with different physicochemical characteristics; recoveries exceeded 87% at fortification levels ranging from 0.02 to 5.0 mg/kg. The precision values obtained for the method, expressed as repeatability and reproducibility, were satisfactory (<11%). Fosthiazate detection limits were 0.025 microg/L and 0.005 mg/kg for water and soil samples, respectively. The decline in the levels of fosthiazate residues in soil was measured after application of fosthiazate to protected tomato cultivation. The dissipation of fosthiazate residues followed first-order kinetics with a calculated half-life of 21 days.  相似文献   

14.
The rate of decline of fenitrothion residues was investigated in leaves and soil of vineyard over 2 months after treatment with two different kinds of commercial formulations: emulsifiable concentrate (EC) and microencapsulate (ME). Fenitrothion residues were determined with GC-NPD after acetone extraction of soil and leaves. The measured initial deposits in soil and leaves varied between 2.6 and 3.8?mg?kg?1 and between 89 and 101?mg?kg?1, respectively. Fenitrothion residues in soil dropped at 0.1–0.2?mg?kg?1 after 60 days following application with EC formulation showing a more rapid decline than the ME. Fenitrothion residues in leaves from ME formulation treatment showed a longer persistence and lower decline rate than those from EC formulation. During the experimental period, fenitrothion remaining in leaves from ME application was 10 times more than from the EC one. Mathematically defined decline curves were established by determining optimal relationships between fenitrothion residues and time. The RF1st-order and RF1.5th-order equation achieved the best adjustment to the experimental data of fenitrothion dissipation on leaves for the ME and EC formulation, respectively, giving fenitrothion half-lives of about 2–3 days for ME and <1 day for EC formulation. In vineyard soil, the best adjustment to the experimental data for ME and EC formulation was achieved by the 1st-order and 1.5th-order equations, respectively, giving fenitrothion half-lives in soil of about 17–21 days for ME and 5 days for EC formulation.  相似文献   

15.
A rapid, highly sensitive, and selective method was developed for the determination of the insecticide chlorantraniliprole (CAP) in corn and soil using ultra-performance liquid chromatography?Ctandem mass spectrometry (UPLC?CMS/MS). Samples were extracted with acetonitrile, and aliquots were cleaned with solid-phase extraction cartridges. Two precursor-product ion transitions for CAP were measured and evaluated to provide maximum confidence in the results. Average recovery for soil, corn grain, and corn straw at different levels (5 or 10, 40, and 100 ??g kg?1) ranged from 74.9 to 97.5%, with intra-day relative standard deviation (RSD) values of 1.9?C11.3% and inter-day RSD values of 4.7?C10.4%. Coefficients of determination (R 2) of 0.9988 or higher were achieved for CAP in soil, corn grain, and corn straw matrix calibration curves, from 5 to 1,000 ??g L?1. The CAP limits of quantitation in soil, corn grain, and straw were determined to be 5, 10, and 10 ??g kg?1, respectively, which were much lower than the maximum residue levels established by the Environmental Protection Agency of United States. UPLC?CMS/MS was used to determine the CAP residues in real corn and soil for studies on their dissipation. The trial results showed that the half-lives of CAP changed from 12.6 to 23.1 days in soils and ranged from 4.9 to 5.4 days in corn straws in the districts of Henan and Shandong, and the average levels of CAP residues in corn grains were all <0.01 mg kg?1 with a harvest withholding period of 180 days.  相似文献   

16.
A rapid, effective and sensitive method to quantitatively determine six fungicide residue was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC–MS/MS). The target compounds were extracted by using acetonitrile and the sorbent used for clean-up in this modified QuEChERS analytical method were biochar, multiwalled carbon nanotubes (MWCNT) and graphitized carbon black (GCB). Results indicated that the MWCNT (10 mg) was the most effective sorbent in removing pigment. This method was validated on spinach, tomato, cucumber, celery, lettuce, rape, pakchoi, romaine lettuce and eggplant matrices spiked at three concentration levels of 0.01, 0.1 and 1 mg kg?1. It exhibited recoveries between 73.1% and 118.2% with RSD values below 20%. Matrix-matched calibrations were performed with the coefficients of determination >0.9901 between concentration levels of 0.01–1 mg kg?1. The limit of quantity (LOQ) for six pesticides ranged from 0.0036 to 0.011 mg kg?1. The developed method was satisfactorily applied to determine pesticide residues in market vegetable samples.  相似文献   

17.
The main impetus for utilising the biosludge from the neutral sulphite semi-chemical pulping process is the Finnish legislation which from 1st January 2016 prohibits the deposition of this residue in landfills in Finland. The dry matter content of the biosludge in this case study was low (12.1 mass %), meaning that incineration of this residue is uneconomical. The biosludge was rich in P (6260 mg kg?1). This, together with the high total organic carbon value of 459 g kg?1 and the metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) lower than the Finnish permissible limits for land application, supports wide and various end-uses for this residue. Except for S (27600 mg kg?1) and Cd (1.4 mg kg?1), the other heavy metal concentrations in the biosludge were lower than the maximum values for heavy metal concentrations in a non-contaminated soil referred to the literature. From the utilisation perspective, and in view of the high levels of S and Na, this residue could efficiently be used, for example, to landscape landfills.  相似文献   

18.
The objective of the study was to determine the dissipation of insect growth regulators in fresh and canned mandarin and apricot to determine the exposure to them. Field studies were carried out in the preharvest period with good agricultural practices (GAP) and in critical agricultural practices. The processing studies were carried out in each relevant step in a pilot plant. A validated methodology was developed (limit of quantification of 0.05?mg?kg?1 for apricots, 0.10?mg?kg?1 for mandarin) including acetone–dichloromethane extraction, cleanup, and liquid chromatography-diode array detection. The pesticides complied with the maximum residue limits (MRLs) except pyriproxyfen, which has not been authorized in apricots, and it did not comply with its MRL for peaches. The dissipation rates (t 1/2) with GAP were fenoxycarb-apricot?>?pyriproxyfen-apricot?>?fenoxycarb-mandarin?>?pyriproxyfen-mandarin. In the processing studies, there was only residue transference in the canning of apricots. All final cans contained residues much lower than the MRLs.  相似文献   

19.
Dissipation and residue levels of bifenthrin and chlorfenapyr in eggplant and soil under field conditions were investigated using gas chromatography coupled with an electron capture detector (GC-ECD). The mean recoveries of bifenthrin and chlorfenapyr were 85.2–104.9%, with relative standard deviations (RSDs) of 0.5–9.1%. The limit of quantification (LOQ) was 0.01 mg kg?1. Bifenthrin exhibited half-lives of 3.3 to 4.1 days in eggplant and 17.8 to 25.7 days in soil; the half-lives of chlorfenapyr were 3.5 to 3.8 days in eggplant and 21.7 to 27.7 days in soil. During harvest, the terminal residues of bifenthrin and chlorfenapyr were below 0.031 and 0.083 mg kg?1, respectively. Risk assessment for different groups of people in China was evaluated. The risk quotients (RQs) of bifenthrin and chlorfenapyr were ranged from 0.0068 to 0.0148 and from 0.0033 to 0.0072, respectively. These results may provide guidance on reasonable use of pesticides and serve as a basis for establishing maximum residue limits (MRLs) in China.  相似文献   

20.
Residue dissipation of hexaconazole and isoprothiolane in the rice field ecosystem was determined by gas chromatography coupled with electron capture detector. Hexaconazole and isoprothiolane (33% microemulsion) were applied at two dosages, 396 g a.i. ha–1 (the recommended dosage) and 594 g a.i. ha–1 (1.5 times the recommended dosage) in the experimental fields in Guizhou, Hunan and Heilongjiang provinces, China, during 2011–2012. The limits of detection and limits of quantification in brown rice were 0.006 and 0.02 mg kg–1 for hexaconazole, 0.0072 and 0.024 mg kg–1 for isoprothiolane, respectively, and they were much below the maximum residue limits (MRLs, 0.1 mg kg–1 for hexaconazole and 1.0 mg kg–1 for isoprothiolane) set by China. Average recoveries of hexaconazole in water, soil, rice plants and brown rice ranged from 77.3% to 93.8% and for isoprothiolane ranged from 78.1% to 99.9% with relative standard deviations < 10%. The results showed that during harvest, the terminal residue levels of hexaconazole and isoprothiolane in brown rice samples were well below the MRLs of China following the interval of 7 days after last application. Therefore, a dosage of 396 g a.i. ha–1 was recommended, which could be considered as safe to human beings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号