首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new bis(5,6-dimethybenzimidazole)-based CoII complexes, Co(pydca)(L)2·2H2O (1) and [Co(bdc)(L)] n (2) (L = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, H2pydca = pyridine-2,6-dicarboxylic acid, H2bdc = 1,4-benzenedicarboxylic acid) were synthesized and characterized by physicochemical, spectroscopic methods and single-crystal diffraction. The cobalt(II) centers display different environments with distorted square-pyramidal geometry in 1 and a perfect tetrahedral geometry in 2. Complex 1 is a mononuclear structure, which is further assembled into a 3D supramolecular network via strong hydrogen bonding as well as ππ interactions; while complex 2 possesses a 2D corrugated (4,4) network that is further formed into a (3,4,4)-connected network with (62.84)(63)2(64.82)2-3,4,4T25 topology due to classical hydrogen bonds. The fluorescence and catalytic performances of the two complexes for the degradation of methyl orange by sodium persulfate have been investigated.  相似文献   

2.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

3.
Two ternary mixed Mn(II) coordination polymers (CPs), namely [Mn(L1)(Hnip)2] n (1) and [Mn(H0.5L2)2(H1.5btc)2] n (2) (H2nip = 5-nitroisophthalic acid, L1 = 1, 4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H3btc = 1,3,5-benzenetricarboxylic acid, L2 = 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl), have been synthesized under hydrothermal conditions and structurally characterized. CP 1 exhibits a non-interpenetrated six-connected pcu framework with the point symbol {412·63}, while CP 2 features a metal-carboxylate loop-like chain, which is further assembled into a 3D supramolecular network via hydrogen bonds and ππ interactions. The thermal stabilities, luminescence, and catalytic properties of both CPs for the degradation of methyl orange in a Fenton-like reaction have also been investigated.  相似文献   

4.
Three coordination polymers, namely {[Ni(L1)(nip)(H2O)]·2H2O} n (1), [Co(L2)(tbip)] n (2), and {[Co2(L3)2(bptc)]·3H2O} n (3) (L1 = 1,4-bis(5,6-dimethylbenzimidazole)butane, L2 = 1,4-bis(5,6-dimethylbenzimidazole)-2-butylene, L3 = 1,3-bis(5,6-dimethylbenzimidazole)propane, H2nip = 5-nitro-isophthalic acid, H2tbip = 5-tert-butyl-isophthalic acid, H4bptc = biphenyl-3,3′,4,4′-tetracarboxylic acid), have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Complexes 1 and 2 both feature a two-dimensional (4,4) layer with (44 × 62) topology. Complex 3 possesses a uninodal 4-connected 2D htb network. The fluorescence spectra and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate in a Fenton-like process are reported.  相似文献   

5.
Two new Co(II) coordination polymers, [Co(L)(glu)] (1) and [Co(L)(npht)]·H2O (2) (H2glu = glutaric acid, H2npht = 3-nitrophthalic acid, L = 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene), have been hydrothermally synthesized by self-assembly of cobalt chloride with a semi-rigid bis(benzimidazole) derivative and different organic bicarboxylic acids. Single crystal X-ray diffraction analysis reveals that complex 1 is a one-dimensional tube-like coordination polymer containing one helical [Co-L] and two linear [Co-glu] chains. In complex 2, two npht ligands connect two Co(II) atoms to form a binuclear [Co(npht)]2 subunit, which is further linked by L ligands with two kinds of conformations to form a 3-D CdSO4-like framework. In addition, the electrochemical behaviors of the title complexes in bulk-modified carbon paste electrodes, and their thermal stabilities and fluorescent properties were investigated in this paper.  相似文献   

6.
Two ternary cobalt(II) coordination polymers (CPs), namely [Co(L1)(npht)] n (1) and {[Co2(L2)2(npht)2(H2O)]·H2O} n (2) (L1 = 4,4′-bis(benzimidazol-1-ylmethyl)biphenyl, L2 = 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, and H2npht = 4-nitrophthalic acid) have been synthesized and structurally characterized by X-ray crystallography. Both CPs feature similar 1D infinite chains containing two distinct loops. CP 1 further forms a 3D supramolecular network via weak C–H···O hydrogen bond interactions. CP 2 shows a 1D two-layer chain structure, assembled through ππ stacking interactions. The electrochemical, luminescence, and photocatalytic activities of the two CPs for the removal of methylene blue under visible or UV light were investigated. Possible photocatalytic mechanisms are discussed.  相似文献   

7.
Two new coordination polymers, formulated as [Co(L1)(btec)0.5] n (1) and {[Co(L2)(bdc)]·H2O} n (2) (L1 = 1,3-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2bdc = 1,3-benzenedicarboxylic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,3-bis(benzimidazol-1-ylmethyl)benzene), have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction. The cobalt atoms present different environments, with a trigonal pyramidal geometry in 1 and a distorted octahedral configuration in 2. Complex 1 shows a 2D (4,4) network linked by L1 and btec4? anions, giving an uninodal 4-connected sql topology with a point symbol of {42·62}, while complex 2 displays a 1D ladder-like chain structure, which is further assembled into a 3D supramolecular architecture via C–H···π hydrogen bonding interactions. The fluorescence properties of both complexes have been investigated in the solid state.  相似文献   

8.
Two new metal–organic coordination polymers {[Co(L1)(nip)]·H2O} n (1) and [Co(L2)(ip)] n (2) (H2ip = isophthalic acid, L1 = 1,3-bis(benzimidazol-1-ylmethyl)benzene, L2 = 1,4-bis(5-methylbenzimidazol-1-ylmethyl)benzene, H2nip = 5-nitroisophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as single-crystal X-ray diffraction analysis. The analysis reveals that complex 1 has a 1D double chain structure connected by L1 and nip2? ligands, which is further assembled into a 3D bbf (moganite network) supermolecular framework via two types of C–H···O hydrogen bond interactions. Complex 2 possesses a 3D MOF with a four-connected cds (CdSO4 network) topology. The fluorescence and catalytic properties of the complexes for the degradation of Congo red have been investigated.  相似文献   

9.
Two Ni(II) coordination polymers, [Ni(dmbbbi)(pic)2·3H2O] n (1) and [Ni(dmbbbi)1.5(pdc)·2H2O] n (2) (dmbbbi = 1,1′-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), Hpic = 2-picolinic acid, H2pdc = pyridine-2,6-dicarboxylic acid), have been hydrothermally synthesized by self-assembly of nickel chloride with a flexible bis(5,6-dimethylbenzimidazole) ligand and two different pyridine carboxylic acids. The compounds were characterized by physico-chemical and spectroscopic methods and by single-crystal diffraction. Compound 1 possesses 1D ribbon-like chains connected by dmbbbi ligands in bis-bridging mode, which are further extended into a 2D supramolecular network through O–H···O hydrogen bonding interactions between pic anions and lattice water molecules, giving a novel trinodal (3,3,4)-connected topology with the point symbol of (4.6.8)2(6.84.10). Compound 2 shows a 2D undulant {63} hexagonal (hcb) network. The structures of the two complexes are further stabilized by intramolecular π···π stacking interactions between the imidazole and N-containing nickel chelate rings. In addition, the fluorescence properties of 1 and 2 have been investigated in the solid state.  相似文献   

10.
Two cobalt(II) metal–organic frameworks constructed from 1,2,4,5-benzenetetracarboxylic acid and flexible bis(5,6-dimethylbenzimidazole) ligands, namely {[Co1.5(Hbtec)(L1)1.5(H2O)2]·(H2O)} n and {[Co(H2btec)(L2)]·(L2)0.5(H2O)2} n [L1 = 1,4-bis(5,6-dimethylbenzimidazole-1-ylmethyl)benzene, H4btec = 1,2,4,5-benzenetetracarboxylic acid, L2 = 1,4-bis(5,6-dimethylbenzimidazole)butane], have been hydrothermally synthesized and characterized by physicochemical and spectroscopic methods and by single-crystal X-ray diffraction. The cobalt atoms present different coordination environments, with trigonal-bipyramidal and octahedral geometries in 1, and a tetrahedral geometry in 2. Complex 1 has a 2D (6,3) wave like layer structure, which is further linked by hydrogen bonding to generate a 3D supramolecular architecture. It is a trinodal (4,4,4)-connected topology with a point symbol of {42·6·83}2{42·62·82}{43·63}2. Complex 2 is a 2D (6,3) honeycomb net, further linked into a 3D supramolecular network via two modes of ππ stacking interactions. The degradation of methyl orange in a Fenton-like process using complexes 1 and 2 as catalysts has been investigated.  相似文献   

11.
Three new Co(II) coordination polymers, [Co(L1)(bpdc)] n (1), [Co(L2)(ndc)(H2O)·2H2O] n (2) and [Co(L3)(ndc)(H2O)·H2O] n (3) (L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2bpdc = 4,4′-biphenyldicarboxylic acid, H2ndc = 2,6-naphthalenedicarboxylic acid) have been synthesized under hydrothermal conditions and structurally characterized by X-ray crystallography. All three complexes feature (4,4) networks that extend into 3D supramolecular frameworks via hydrogen bonding interactions. The luminescence properties and catalytic activities of these complexes with respect to the degradation of methyl orange in a Fenton-like process have been investigated.  相似文献   

12.
Three new silver coordination compounds with empirical formula [Ag2(L1)2·(ntp)·(H2O)3.25]n (1), [Ag1.5(L1)1.5·(H0.5bdc)·(H2O)4]n (2) and [Ag(L2)(Hmip)]n (3) (L1 = 1,4-bis(imidazol-1-ylmethyl)benzene, L2 = 1,1′-(1,4-butanediyl)bis-1H-benzimidazole, H2ntp = 2-nitroterephthalic acid, H2bdc = 1,3-benzenedicarboxylic acid, H2mip = 5-methylisophthalic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and physico-chemical spectroscopic methods. The silver centers display different environments with a linear geometry in 1 and 2 and distorted T-shaped geometry in 3. In 1–3, the bidentate N-donor ligands (L1 and L2) bridge neighboring silver centers to form 1D infinite chain structures. Complexes 2 and 3 are extended into 2D layers, and 1 is packed into a 3D 3,4,4,6-connected supermolecular network via classical O–H···O hydrogen bonds, while 3 is further extended into 3D framework through π–π interactions. The luminescence properties of complexes 1, 2 and 3 were investigated in the solid state. These coordination polymers possess a remarkable activity for degradation of methyl orange by persulfate in a Fenton-like process.  相似文献   

13.
Two new dinuclear copper(II) complexes, Cu2(L1)4(mal)2(H2O)2 (1) (L1 = 5,6-dimethylbenzimidazole, mal = malonate), Cu2(L2)2(pydca)2·4H2O (2) (L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, pydca = pyridine-2,6-dicarboxylate) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The Cu(II) atoms in 1 and 2 both have square pyramidal coordination geometry. In 1, the two similar mononuclear structures are linked by π–π stacking as well as multiple hydrogen bonding interactions to generate a 2D supramolecular layer, while complex 2 is connected with two different patterns of π–π stacking and hydrogen bonding interactions into a 3D supramolecular network. The catalytic activities of 1 and 2 for the degradation of Congo red have been investigated.  相似文献   

14.
Two Co(II) coordination polymers (CPs), namely [Co(L1)(DCTP)]n (1) and [Co(L2)(DCTP)]n (2) [L1?=?1,4-bis(5,6-dimethylbenzimidazol-1-yl)butane, L2?=?1,5-bis(5,6-dimethylbenzimidazol-1-yl)pentane, H2DCTP?=?2,5-dichloroterephthalic acid] were synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, powder X-ray diffraction (PXRD) and infrared spectroscopy. CP 1 has a 2D (4,4) corrugated sheet structure, which is further extended into a 2D double layer by C–H···O weak hydrogen bonding interactions, while CP 2 displays a 2D layer with hcb network, which is assembled into a 3D supramolecular framework through C–H···O hydrogen bonding. Both CPs exhibited promising photocatalytic activities for the degradation of methylene blue under UV irradiation. In addition, the thermal stabilities and the luminescence properties of both CPs have been investigated.  相似文献   

15.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

16.
Two new cadmium(II) coordination polymers, {[Cd(L1)(tbta)]·H2O} n (1) and [Cd(L2)(tbta)] n (2) (L1 = 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid and L2 = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene) are obtained under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. The L1 and L2 ligands differ by subtle variation of substituents at semi-rigid bis(benzimidazole) bakcbones. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 displays a 2D {44.62} sql/Shubnikov tetragonal plane network. Complexes 1 and 2 possess high thermal stabilities and promising fluorescence behavior in the solid state.  相似文献   

17.
Two metal–organic coordination polymers, {Co(bbbi)0.5(bm)(Hbtc)} n (1) and {Ag2(bbbi)2(ntp)(H2O)·4H2O} n (2), [bbbi = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, bm = benzimidazole, H3btc = 1,2,4-trimellitic acid, and H2ntp = 2-nitroterephthalic acid], have been hydrothermally synthesized and characterized by physico-chemical and spectroscopic methods and single-crystal diffraction. 1 Features a 1D ladder-like chain and is further connected by O–H···O hydrogen bonding interactions to yield a 3D supramolecular architecture. 2 Possesses a 1D infinite zigzag chain connected by bbbi ligands in bis-monodentate mode, which is further extended into a 3D complicated supramolecular network by face-to-face ππ stacking interactions and O–H···O hydrogen bonds. Moreover, both compounds exhibit catalytic properties on degradation of methyl orange in Fenton-like process.  相似文献   

18.
Two new cobalt(III) complexes of the hexadentate ligand [1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane] (H2bpctb) with N4S2 donor set atoms have been synthesized. A reaction of Co(CH3COO)2·4H2O with (H2bpctb) leads to the formation of [CoIII(bpctb)]PF6 (1) having a CoN2(pyridine)N′2(amide)S2(thioether) coordination by symmetric bpctb2? ligand. A similar reaction under slightly different conditions, however, gives [CoIII(L a )(L b )] (2), resulting from a C–S bond cleavage reaction triggered by an acetate ion as a base, having CoN2(pyridine)N′2(amide)S(thioether)S′(thiolate) coordination. These two Co(III) complexes have been characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structures of [CoIII(bpctb)]PF6 (1) in the form of the solvate (1·MeOH·H2O) and of [CoIII(L a )(L b )] (2) have been determined by X-ray crystallography. The Co atoms of both complexes exhibit distorted octahedral geometry. The electrochemical investigation of [Co(bpctb)]PF6·MeOH·H2O (1·MeOH·H2O) and [CoIII(L a )(L b )] (2) by cyclic voltammetry reveals a reversible CoIII–CoII redox process at E 1/2 = ?0.32 V (ΔE p = 80 mV); for 1, and E 1/2 = ?0. 87 V (ΔE p = 70 mV) for 2.  相似文献   

19.
Two cobalt(II) coordination polymers, [Co(L1)(tbi)(H2O)] n (1) and [Co(L2)(tbi)] n (2) (L1 = 1,4-bis(benzimidazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H2tbi = 5-tert-butyl isophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Both complexes exhibit similar 2D (4,4) layer structures, constructed from tbi2? and bis(benzimidazole)-based bridging ligands. The cobalt centers display different coordination environments, with an octahedral geometry in 1 and a distorted square-pyramidal configuration in 2. The thermal stabilities, fluorescence and catalytic properties of both complexes have been investigated.  相似文献   

20.
Three bis-triazole-bis-amide-based copper(II) complexes with different dimensionality, [Cu(dtcd)2 (1,3-HBDC)2]·2H2O (1), [Cu(dtcd) (1,3,5-H2BTC)2]·2H2O (2) and [Cu4(μ 3-OH)2(dtcd)2(SIP)2]·4H2O (3) (dtcd = N,N′-di(4H-1,2,4-triazole) cyclohexane-1,4-dicarboxamide, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, NaH2SIP = sodium 5-sulfoisophthalate), have been synthesized under different pH values and structurally characterized. Complex 1 exhibits a zero-dimensional mononuclear structure with one carboxyl group of 1,3-HBDC coordinating to copper(II), while the other carboxyl group is protonated. In complex 2, the CuII ions are bridged by the dtcd ligands forming a one-dimensional chain, in which only one carboxyl group of 1,3,5-H2BTC coordinates with the metal, while the others are protonated. Complex 3 possesses a two-dimensional network based on tetranuclear Cu4 clusters supported by the dtcd and nonprotonated SIP ligands. The various structures clearly indicate that the pH and polycarboxylates have a great influence on the dimensionality and structures of 13. The luminescence properties of 13 and magnetic properties of 3 were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号