首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two Cu(II) complexes based on curcumin, namely CuL 2 1 [HL1 = 1,7-bis[4-(2-oxymethylenepyridine)-3-methoxyl]phenyl-1,6-heptadiene-3,5-diketone] and CuL 2 2 [HL2 = 1,7-bis[4-(3-oxymethylene-2-chlorothiophene)-3-methoxyl] phenyl-1,6-heptadiene-3,5-diketone], have been synthesized and characterized by physico-chemical and spectroscopic methods. The interactions of calf thymus DNA (CT-DNA) with both complexes have been investigated by UV–Vis absorption, fluorescence and viscosity titration methods. Both complexes are found to interact with CT-DNA by intercalative binding modes. Evaluation of the cytotoxicities of the complexes against three human tumor cells showed that they have potent cytotoxicities against all three cell lines.  相似文献   

2.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

3.
Two new dinuclear copper(II) complexes, Cu2(L1)4(mal)2(H2O)2 (1) (L1 = 5,6-dimethylbenzimidazole, mal = malonate), Cu2(L2)2(pydca)2·4H2O (2) (L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, pydca = pyridine-2,6-dicarboxylate) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The Cu(II) atoms in 1 and 2 both have square pyramidal coordination geometry. In 1, the two similar mononuclear structures are linked by π–π stacking as well as multiple hydrogen bonding interactions to generate a 2D supramolecular layer, while complex 2 is connected with two different patterns of π–π stacking and hydrogen bonding interactions into a 3D supramolecular network. The catalytic activities of 1 and 2 for the degradation of Congo red have been investigated.  相似文献   

4.
A new Schiff base complex [Ni(H2L1)(NO3)](NO3) (1) (H2L1 = 3-[N,N′-bis-2-(5-bromo-3-(morpholinomethyl) salicylideneamino) ethyl amine]) was synthesized from reaction of the ditopic ligand H2L1 with Ni(NO3)2 in anhydrous MeOH. Complex 1 is stable in the solid state, but prone to hydrolysis. Recrystallization of 1 from wet MeOH led to the isolation of a novel unsymmetrical complex [Ni(HL2)(NO3)](NO3) (2) (HL2 = 2-[(2-(2-aminoethylamino) ethylimino) ethyl)-5-bromo-3-(morpholino methyl) salicylidene amine]). X-ray single-crystal analysis of complex 2 showed that complex 1 had undergone partial decomposition of one imine bond. In contrast, the Schiff base complex [Ni(HL3)](NO3) (3) (H2L3 = N,N′-bis(5-methyl-salicylidene) diethylenetriamine) was stable in wet methanol, and the single-crystal structure of 3 showed that the Ni(II) center was coordinated in an unsymmetrical square planar geometry. Density functional theory calculations were performed in order to obtain a geometry-optimized model of complex 1, in which the Ni(II) center was coordinated in a similar manner as that in complex 3. The thermodynamic parameters were calculated, in order to rationalize the difference in hydrolytic reactivity between complexes 1 and 3.  相似文献   

5.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

6.
The cytotoxic and antitumour activities of four curcuminoid analogues, namely 1,7-diphenyl-1,6-heptadiene-3,5-dione (HL1), 1,7-bis(4-methoxyphenyl)-1,6-heptadiene-3,5-dione (HL2), 1,7-bis(3,4-dimethoxyphenyl)-1,6-heptadiene-3,5-dione (HL3), 1,7-bis(3,4-dihydroxyphenyl)-1,6-heptadiene-3,5-dione (HL4) and their CuII complexes were investigated.The Cu complexes were found to be more active as antitumour agents compared to the free curcuminoids, in both in vitro studies and in increasing the life span of tumour bearing mice. The synthesis and characterization of the curcuminoid analogues and their CuII chelates employing u.v., i.r., 1 H-n.m.r., e.s.r. and mass spectral studies are also included in this report.  相似文献   

7.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

8.
Two unsymmetrical complexes, [NiL1]ClO4 (1) and [NiL2]ClO4 (2) have been synthesized and characterized by IR, UV, ES-MS and single crystal X-ray diffraction, where HL1 and HL2 are, respectively, the [1+1] condensation products of 2,6-diformyl-4-X-phenol (X = F or CH3) with N 1-(2-aminoethyl)-N 2-(4-nitrobenzyl) ethane-1,2-diamine. The coordination geometry of the metal in both complexes can be approximately described as square planar with a mean plane deviation of 0.032 Å in complex 1 and 0.027 Å in complex 2, respectively. The binding activities of the complexes toward calf-thymus DNA have been analyzed by spectroscopy and viscosity methods. The binding constants of 1 and 2 obtained from UV spectroscopic studies are 5.43 × 105 and 1.83 × 105 M?1, respectively, while the linear Stern–Volmer quenching constants obtained from fluorescence spectroscopic studies are 0.83 × 103 and 0.71 × 103 M?1, respectively. The cyclic voltammograms of the complexes show a pseudo-reversible electrochemical process.  相似文献   

9.
A novel compound [HMo 8 VI V 6 V AsVO42][Cu(2,2′-bpy)2]2[Cu(2,2′-bpy)]·2H2O (2,2′-bpy = 2,2′-bipyridine) 1 has been hydrothermally synthesized and structurally characterized by elemental analyses, infrared spectroscopy, ultraviolet spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and single crystal X-ray diffraction. Crystal structure analysis reveals that compound 1 is a bi-capped As/Mo/V Keggin polyoxometalate tri-supported copper complexes, and exhibits an extended three-dimensional supramolecular network via hydrogen-bonding and π–π stacking interactions. The electrochemical and magnetic properties of compound 1 have been studied.  相似文献   

10.
The complexes [CuL2Cl2]n (1), [CoL2Cl2(H2O)2]·L (2) and [MnL2Cl2(H2O)2]·L (3) (L = 3-chloro-6-(1H-1,2,4-triazol-1-yl) pyridazine) were synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analysis reveals that the Cu(II) center of complex 1 is located in a slightly distorted tetragonal pyramidal environment and bridged by chlorine atoms to generate infinite 1D chains, which are further connected into 2D supramolecular structures by C–H…Cl hydrogen bonds. The Co(II) and Mn(II) atoms in complexes 2 and 3 both have a distorted octahedral coordination sphere, and the crystal lattices include hydrogen bonds and ππ stacking interactions to yield 3D supramolecular frameworks. The antioxidant activities (influence on O2 ?? and ?OH) and antibacterial activities of the ligand L and its three complexes were also investigated.  相似文献   

11.
Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.  相似文献   

12.
A complex of composition {[{Cu(NDC)(OH2)(tn)(μ-OH2)}2]·2H2O} (1) and a mononuclear complex salt [Cu(OH2)2(tn)2](NDC)·3H2O (2), where NDC = 2,6-naphthalenedicarboxylate dianion and tn = 1,3-diaminopropane, were simultaneously crystallized from an aqueous solution of the copper(II) naphthalenedicarboxylate—1,3-diaminopropane—methanol system. The crystal and molecular structures of both complexes were determined by single-crystal X-ray diffraction. Compound (1) consists of a supramolecular coordination complex in which the monomeric unit is assembled from a homodinuclear Cu(II) bridged by two water ligands. The Cu(II) centers exhibit distorted octahedral coordination; the equatorial plane is provided by one chelating tn ligand, one NDC2? ligand, one μ-H2O while the axial positions are occupied by H2O and μ-H2O. Strong intra- and/or intermolecular hydrogen bonds, also involving the crystallization water molecules, together with π–π stacking interactions, are involved in building up the supramolecule. The solid structure of compound (2) includes three water molecules of crystallization, the counter ion NDC2?, and a Cu(II) cationic complex in which the metal is six-coordinated in an axially elongated octahedron defined by two chelating tn ligands in the equatorial plane and two water ligands in the axial positions. Thermal analyses of (1) show two significant weight losses corresponding to water molecules (lattice and coordinated), followed by the decomposition of the network.  相似文献   

13.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

14.
The complexes [Fe(bpz*mpy)2](ClO4)2 (1a), [Cu(bpz*mpy)2](ClO4)2 (1b) and [Ag(bpz*mpy)(Ph3P)](ClO4) · H2O (2) (bpz*mpy = pyridin-2-yl-bis(3,5-dimethylpyrazol-1-yl)methane) have been synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analysis reveals that the central FeII and CuII ions in complexes 1a and 1b are located on a twofold rotation axis and have a distorted octahedral coordination sphere, while the AgI center in complex 2 is tetrahedrally coordinated. The electrochemical properties of complex 1b have been investigated. Furthermore, a variable temperature magnetic susceptibility study of complex 1a has also been performed over the measured temperature range 2–300 K.  相似文献   

15.
The effect of energetic γ-radiation on 1H NMR, electronic absorption, ESR spectra, differential thermal analysis (DTA) and solid state dc electrical conductivity of the ligand N-phenyl-2-(2-(phenylamino)acetyl)hydrazine carbothioamide (H2L) and its copper(II) complexes; Cu(HL)(OAc)H2O, Cu(HL)BrH2O and Cu(H2L)2(NO3)2?3H2O before and after γ-irradiation (hereafter referred to as (B), (B 1 ), (B 2 ), (B 3 ) and (A), (A 1 ), (A 2 ), (A 3 ), respectively) has been studied. Electronic spectral bands of the complexes after irradiation exhibited some better resolved shapes with a remarkably higher absorbance, ESR spectrum of complex Cu(HL)BrH2O (B 2 ) before irradiation showed isotropic spectrum with g iso = 2.075 however, after irradiation (A 2 ) displayed axial ESR spectrum with g  > g  > 2.0023 and d (x2?y2) ground state. DTA of the compounds reveals that γ-irradiation induced generation of new peaks as well as changes in the peak intensities. Solid state dc electrical conductivity for complexes was investigated before and after γ-irradiation. Complexes were found to be semiconductors, the activation energies (E a) were calculated for the complexes by using the Arrhenius plot.  相似文献   

16.
Reactions of Ni(NO3)2 · 6H2O) in EtOH(iso-PrOH) with optically active bis(menthane) ethylene-diaminodioxime (H2L1), pinano-para-menthane ethylenediaminodioxime (H2L2), pinano-para-menthane propylenediaminodioxime (H2L3) and bis(pinane) propylenediaminodioxime (H2L4) were used to synthesize [Ni(H2L1)NO3[NO3 · 2H2O (I), [Ni(HL2)]NO3 (II), [Ni(HL3)]NO3 (III), and [Ni(HL4)]NO3 (IV). X-ray diffraction study of paramagnetic complex Ieff = 3.04 μB and diamagnetic complexes II and III revealed their ionic structures. A distorted octahedral polyhedron N4O2 in the cation of complex I is formed by the N atoms of tetradentate cycle-forming ligand, i.e., the H2L1 molecule, and the O atoms of the NO 3 ? anion acting as a bidentate cyclic ligand. In the cations of complexes II and III, containing a pinane fragment, the coordination core NiN4 has the shape of a distorted square formed on coordination of tetradentate cycle-forming ligands, i.e., anions of the starting dioximes. The structure of diamagnetic complex IV is likely to be similar to the structures of complexes II and III.  相似文献   

17.
Two isomeric NS2-macrocycles incorporating a xylyl group at ortho (o -L) and meta (m -L) positions were employed and their copper complexes (1?C5) were prepared and structurally characterized. The copper(II) nitrate complexes [Cu(L)(NO3)2] (1: L = o -L, 2: L = m -L) for both ligands were isolated. In each case, the copper center is five-coordinated with a distorted square pyramidal geometry. Despite the overall geometrical similarity, 1 and 2 show the different ligand conformation due to the discriminated packing pattern. Reaction of o -L with copper(II) perchlorate afforded complex 3 containing two independent complex cations [Cu(o -L)(H2O)(DMF)(ClO4)]+ and [Cu(o -L)(H2O)(DMF)]2+; the coordination geometry of the former is a distorted octahedron while the latter shows a distorted square pyramidal arrangement. In the reactions of copper(I) halides (I or Br), o -L gave a mononuclear complex [Cu(o-L)I] (4) with a distorted tetrahedral geometry, while m -L afforded a unique exodentate 2:1 (ligand-to-metal) complex [trans-Br2Cu(m-L)2] (5) adopting a trans-type square-planar arrangement.  相似文献   

18.
A copper(I) complex [Cu(L1)2I]2 (1) [L1 = 2-cyanopyrazine] has been prepared by the reduction of copper(II) with iodide in the presence of L1. This complex is made to undergo [2 + 3] cycloaddition with sodium azide to prepare a copper(II) complex, [Cu(L2)2(H2O)2]·H2O (2) [HL2 = 5-pyrazinyltetrazole]. Both the complexes have been characterized by elemental and spectral analysis and single-crystal X-ray diffraction studies. Copper(I) centre has tetrahedral geometry in complex 1, whereas copper(II) centre assumes octahedral geometry in complex 2. Supramolecular interactions in both complexes were also explored.  相似文献   

19.
The Schiff base bis(4-ethylbenzyl) p-phenylenediimine, 4-eb-p-phen (1), and six new dimeric Pd(II) complexes of the type [Pd(μ-X)(4-eb-p-phen)]2 {X = Cl (2), Br (3), I (4), N3 (5), NCO (6), SCN (7)} have been synthesized and characterized by elemental analysis, IR spectroscopy, and 1H and 13C{1H}-NMR experiments. The thermal behavior of the complexes 27 has been investigated by means of thermogravimetry and differential thermal analysis. From the final decomposition temperatures, the thermal stability of the complexes can be ordered in the following sequence: 3 > 4 > 7 > 2 ≈ 5 > 6. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction (XRD).  相似文献   

20.
A tridentate hydrazone precursor, N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (L) (1:1 refluxed product of acetichydrazide and 2-acetylpyridine), produced two octahedral CuII and NiII derivatives, [CuL2]·NO3 (1) and [NiL2]·ClO4·H2O (2). Both are subjected to X-ray diffraction system, and structural investigation shows that the central metal atom (CuII or NiII) adopts a distorted octahedral geometry with N4O2 donor sets by coordination of a pair of independent hydrazone precursors. Besides X-ray study, IR and UV-vis spectra, thermal analysis and room temperature magnetic moments are utilized for establishing significant characteristics of both complexes. It is apparent that the M-Npyridine bonds are slightly longer than the M-Nimino bonds, Cu1-N1 and Cu1-N4 [2.300(2) and 2.038(2) ?] for 1 and Ni1-N1 and Ni1-N4 [2.075(2) and 2.084(1) ?] for 2, Cu1-N2 and Cu1-N5 [2.062(1) and 1.932(1) ?] for 1 and Ni1-N2 and Ni1-N5 [2.008(2) and 1.975(2) ?] for 2, respectively. As per our observation, the effective magnetic moment value (μeff) is found to be 1.77 B.M. for 1 and 3.06 BM for 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号