首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved – namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data  相似文献   

2.
Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors   总被引:5,自引:0,他引:5  
The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.  相似文献   

3.
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of −OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.  相似文献   

4.
Summary Inhibition of aromatase, a cytochrome P450 that converts androgens to estrogens, is relevant in the therapeutic control of breast cancer. We investigate this inhibition using a three-dimensional quantitative structure-activity relationship (3D QSAR) method known as Comparative Molecular Field Analysis, CoMFA [Cramer III, R.D. et al., J. Am. Chem. Soc., 110 (1988) 5959]. We analyzed the data for 50 steroid inhibitors [Numazawa, M. et al., J. Med. Chem., 37 (1994) 2198, and references cited therein] assayed against androstenedione on human placental microsomes. An initial CoMFA resulted in a three-component model for log(1/Ki), with an explained variance r2 of 0.885, and a cross-validated q2 of 0.673. Chemometric studies were performed using GOLPE [Baroni, M. et al., Quant. Struct.-Act. Relatsh., 12 (1993) 9]. The CoMFA/GOLPE model is discussed in terms of robustness, predictivity, explanatory power and simplicity. After randomized exclusion of 25 or 10 compounds (repeated 25 times), the q2 for one component was 0.62 and 0.61, respectively, while r2 was 0.674. We demonstrate that the predictive r2 based on the mean activity (Ym) of the training set is misleading, while the test set Ym-based predictive r2 index gives a more accurate estimate of external predictivity. Using CoMFA, the observed differences in aromatase inhibition among C6-substituted steroids are rationalized at the atomic level. The CoMFA fields are consistent with known, potent inhibitors of aromatase, not included in the model. When positioned in the same alignment, these compounds have distinct features that overlap with the steric and electrostatic fields obtained in the CoMFA model. The presence of two hydrophobic binding pockets near the aromatase active site is discussed: a steric bulk tolerant one, common for C4, C6-alpha and C7-alpha substitutents, and a smaller one at the C6-beta region.  相似文献   

5.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

6.
7.
In this paper, two 3‐dimensional quantitative structure‐activity relationship models for 60 human immunodeficiency virus (HIV)‐1 protease inhibitors were established using random sampling analysis on molecular surface and translocation comparative molecular field vector analysis (Topomer CoMFA). The non–cross‐validation (r2), cross‐validation (q2), correlation coefficient of external validation (Q2ext), and F of 2 models were 0.94, 0.80, 0.79, and 198.84 and 0.94, 0.72, 0.75, and 208.53, respectively. The results indicated that 2 models were reasonable and had good prediction ability. Topomer Search was used to search R groups in the ZINC database, 20 new compounds were designed, and the Topomer CoMFA model was used to predicate the biological activity. The results showed that 18 new compounds were more active than the template molecule. So the Topomer Search is effective in screening and can guide the design of new HIV/AIDS drugs. The mechanism of action was studied by molecular docking, and it showed that the protease inhibitors and Ile50, Asp25, and Arg8 sites of HIV‐1 protease have interactions. These results have provided an insight for the design of new potent inhibitors of HIV‐1 protease.  相似文献   

8.
9.
One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient (r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained (r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment (r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.  相似文献   

10.
Focal adhesion kinase (FAK) is a promising target for developing more effective anticancer drugs. To better understand the structure-activity relationships and mechanism of actions of FAK inhibitors, a molecular modeling study using 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy analysis were conducted. Two types of satisfactory 3D-QSAR models were generated, comprising the CoMFA model (R2cv = 0.528, R2pred = 0.7557) and CoMSIA model (R2cv = 0.757, R2pred = 0.8362), for predicting the inhibitory activities of novel inhibitors. The derived contour maps indicate structural characteristics for substituents on the template. Molecular docking, molecular dynamic simulations and binding free energy calculations further reveal that the binding of inhibitors to FAK is mainly contributed from hydrophobic, electrostatic and hydrogen bonding interactions. In addition, some key residues (Arg14, Glu88, Cys90, Arg138, Asn139, Leu141, and Leu155) responsible for ligand-receptor binding are highlighted. All structural information obtained from 3D-QSAR models and molecular dynamics is consist with the available experimental activities. All the results will facilitate the optimization of this series of FAK inhibitors with higher inhibitory activities.  相似文献   

11.
12.
13.
14.
B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔGbind) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC50 < 50 μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs.  相似文献   

15.
ABSTRACT

BTK inhibitors have been proved as an effective target for B-cell malignancies. Ibrutinib is the most advanced irreversible BTK inhibitor for treating mantle cell lymphoma/chronic lymphocytic leukaemia but with existing drug resistance and adverse effects. To design novel effective and safety reversible BTK inhibitors, 115 newly cinnoline analogues were selected to perform molecular docking and 3D-QSAR study because of the main scaffold similarity to Ibrutinib. Both established CoMFA and CoMSIA models obtained high predictive and satisfactory value. CoMFA/CoMSIA contour maps demonstrated that bulky substitutions are preferred at R1 and R3 positions, and introducing hydrophilic and negative electrostatic substitutions at R1 positions is important for improving BTK inhibitory activities. These results will be useful to provide clues for rationally designing novel and high potency BTK inhibitors.  相似文献   

16.
Abstract

This study has investigated docking-based 3D quantitative structure–activity relationships (QSARs) for a range of quinoline carboxylic acid derivatives by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). A docking study has shown that most of the compounds formed H-bonds with Arg136 and Gln47, which have already been shown to be essential for the binding of ligands at the active site of the hydroorotate dehydrogenase adenovirus (hDHODH). Bioactive conformations of all the molecules obtained from the docking study were used for the 3D QSAR study. The best CoMFA and CoMSIA models were obtained for the training set and were found to be statistically significant, with cross-validated coefficients (q2 ) of 0.672 and 0.613, r2 cv of 0.635 and 0.598 and coefficients of determination (r2 ) of 0.963 and 0.896, respectively. Both models were validated by a test set of 15 compounds, giving satisfactory predicted correlation coefficients (r2 pred) of 0.824 and 0.793 for the CoMFA and CoMSIA models, respectively. From the docking-based 3D QSAR study we designed 34 novel quinoline-based compounds and performed structure-based virtual screening. Finally, in silico pharmacokinetics and toxicities were predicted for 24 of the best docked molecules. The study provides valuable information for the understanding of interactions between hDHODH and the novel compounds.  相似文献   

17.
18.
Lipid metabolism plays a significant role in influenza virus replication and subsequent infection. The regulatory mechanism governing lipid metabolism and viral replication is not properly understood to date, but both Phospholipase D (PLD1 and PLD2) activities are stimulated in viral infection. In vitro studies indicate that chemical inhibition of PLD1 delays viral entry and reduction of viral loads. The current study reports a three-dimensional pharmacophore model based on 35 known PLD1 inhibitors. A sub-set of 25 compounds was selected as the training set and the remaining 10 compounds were kept in the test set. One hundred and twelve pharmacophore models were generated; a six-featured pharmacophore model (AADDHR.57) with survival score (2.69) produced a statistically significant three-dimensional quantitative structure–activity relationship model with r2 = 0.97 (internal training set), r2 = 0.71 (internal test set) and Q2 = 0.64. The predictive power of the pharmacophore model was validated with an external test set (r2 = 0.73) and a systematic virtual screening work-flow was employed showing an enrichment factor of 23.68 at the top 2% of the dataset (active and decoys). Finally, the model was used for screening of the filtered PubChem database to fetch molecules which can be proposed as potential PLD1 inhibitors for blocking influenza infection.  相似文献   

19.
Depression is a critical mood disorder that affects millions of patients. Available therapeutic antidepressant agents are associated with several undesirable side effects. Recently, it has been shown that Neurokinin 1 receptor (NK1R) antagonists can potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs). In this study, a series of phenyl piperidine derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors were applied to quantitative structure–activity relationship (QSAR) analysis. A collection of chemometrics methods such as multiple linear regression (MLR), factor analysis–based multiple linear regression (FA-MLR), principal component regression (PCR), and partial least squared combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations between structural characteristics and NK1R antagonism/SERT inhibitory of these compounds. The best multiple linear regression equation was obtained from GA-PLS and MLR for NK1R and SERT, respectively. Based on the resulted model, an in silico-screening study was also conducted and new potent lead compounds based on new structural patterns were designed for both targets. Molecular docking studies of these compounds on both targets were also conducted and encouraging results were acquired. There was a good correlation between QSAR and docking results. The results obtained from validated docking studies indicate that the important amino acids inside the active site of the cavity that are responsible for essential interactions are Glu33, Asp395 and Arg26 for SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82 for NK1R receptors.  相似文献   

20.
Recently, we reported structurally novel PDE4 inhibitors based on 1,4-benzodiazepine derivatives. The main interest in developing bezodiazepine-based PDE4 inhibitors is in their lack of adverse effects of emesis with respect to rolipram-like compounds. A large effort has thus been made toward the structural optimization of this series. In the absence of structural information on the inhibitor binding mode into the PDE4 active site, 2D-QSAR (H-QSAR) and two 3D-QSAR (CoMFA and CoMSIA) methods were applied to improve our understanding of the molecular mechanism controlling the PDE4 affinity of the benzodiazepine derivatives. As expected, the CoMSIA 3D contour maps have provided more information on the benzodiazepine interaction mode with the PDE4 active site whereas CoMFA has built the best tool for activity prediction. The 2D pharmacophoric model derived from CoMSIA fields is consistent with the crystal structure of the PDE4 active site reported recently. The combination of the 2D and 3D-QSAR models was used not only to predict new compounds from the structural optimization process, but also to screen a large library of bezodiazepine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号