首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Mercury porosimetry has been applied to characterize the pore structure of fine coals particles. Interparticle voids and compressibility effects on the mercury intrusion data were examined. It is found that coal compressibility has a significant effect on mercury porosimetry data when pressure P>20 MPa. The compressibility of the two coals used was determined to be 3.13×10−10 m2 N−1 and 2.50×10−10 m2 N−1 for CA and GO coals, respectively. Fractal dimension analysis provides a “fingerprint” to distinguish the effect of coal compression from the pore filling process during mercury intrusion. It is shown that fractal dimension can be evaluated from the compressibility corrected pore volume data. Results from the present study suggest that statistic self-similarity of the fractal dimension perspective is limited by certain artificial effects, such as crushing and grinding. Different surface irregularities exist over different pore size ranges, and a single fractal dimension value can only be used to describe the surface irregularity within a limited pore size range. The average fractal dimensions in the pore size range of 6–60 nm were found to be 2.71 and 2.43 for CA and GO coals, respectively.  相似文献   

2.
The so-called sugaring of marble is a very common degradation phenomenon, affecting both historical monuments and modern buildings, which is originated by environmental temperature fluctuations. Thermal cycles are indeed responsible for micro-cracks formation at the boundaries between calcite grains, so that marble is subjected to granular disintegration and can be reduced to a sugar-like powder of isolated calcite grains by just the pressure of a finger. Since no effective, compatible and durable treatment for sugaring marble consolidation is currently available, in this paper a novel consolidating treatment recently proposed for limestone, based on the formation of hydroxyapatite inside the stone, was investigated for weathered marble. To test the new treatment on suitably decayed marble samples, some naturally sugaring marbles from the Monumental Cemetery in Bologna (Italy, nineteenth century) were firstly characterized by scanning electron microscope (SEM), mercury intrusion porosimetry (MIP) and ultrasonic pulse velocity (UPV) measurement. Then, artificially weathered samples were produced by heating fresh Carrara marble samples at 400 °C for 1 h. The effects of artificial weathering were characterized using the same techniques as above, and a very good agreement was found between microstructure and mechanical features of naturally and artificially weathered samples. Then, the hydroxyapatite-based treatment was tested on the so-obtained artificially weathered samples, and the treatment effects were characterized by UPV, MIP and SEM equipped with energy dispersive spectrometry and Fourier transform infrared spectroscopy. The hydroxyapatite-based treatment exhibited a remarkable ability of restoring marble cohesion and a good compatibility in terms of modifications in pore size distribution, which leads to regard this treatment as a very promising consolidant for weathered marble.  相似文献   

3.
Combinations of gas sorption and mercury porosimetry experiments have been run in series on the same sample. This has been achieved by freezing entrapped mercury in place before a subsequent gas sorption experiment was carried out. Several different bidisperse materials with similarly shaped mercury intrusion curves and similar levels of mercury entrapment have been studied. The entrapment of mercury within certain pores in the porous medium can often lead to marked changes in the shape of the gas sorption hysteresis loop between the data obtained prior and subsequent to porosimetry. It was found that the degree of the change of shape of the sorption hysteresis loops differed markedly between different materials. The analysis of the gas sorption hysteresis loops using percolation theory has allowed information to be obtained on the pore length distribution, and/or the distribution of pore co‐ordination number and the spatial arrangement of pores within the sample, in addition to the pore connectivity and lattice size usually obtained. The interfaced experiments have also allowed the internal consistency of analysis methods based on percolation theory to be tested, semi‐empirical alternatives to the Washburn Equation for the analysis of raw mercury porosimetry data to be independently validated, and the mechanisms of mercury entrapment in various samples to be determined.  相似文献   

4.
The present contribution is part of a biennial research project funded by the Italian Ministry of Education, Universities and Research (MIUR). This study, currently in progress, deals with innovative experimental approaches applied to the chemical, mineralogical and physical transformations occurring during the prolonged permanence of archaeological ceramic finds in seawater environments as well as to restoration and conservation issues of the same underwater artifacts. The experimental approach used in this research consisted in the manufacture of ceramic test-pieces (briquettes) and their successive placing in underwater environment. This work aims at assessing how textural and compositional parameters along with firing temperatures of a ceramic paste could affect total porosity, pore size distribution and kinetics of capillary water absorption. A further purpose is concerned with the study of the potential modification of porosity and pore size distribution in the same ceramic bodies after immersion in seawater (3 and 6 months). The study was carried out using a multi-technique approach including investigations through polarized light microscopy (PLM), capillary water absorption test, mercury intrusion porosimetry (MIP) analyses and theoretical calculation of salt crystallization pressures. The obtained results show a different behavior of the six experimental pastes as a function of their compositional and textural features as well as pore size distribution and firing temperatures. These parameters, in various extents, have been found significantly influencing the kinetics of water absorption and the susceptibility of ceramic artifacts to salt crystallization processes, with important implications on conservation procedures needed before the musealization.  相似文献   

5.
Samples of sandstone with and without deposits of silicon oxide stone strengthener as well as samples of historical brick material were analyzed by transverse NMR relaxation and mercury intrusion porosimetry. Relaxation times and relaxation time distributions of the protons from the water saturated samples were measured by low-field NMR using homogeneous and inhomogeneous fields. The measurements in inhomogeneous fields were performed with two different NMR-MOUSE sensors, one with a field gradient of 2 T/m and the other with an average field gradient of about 20 T/m. In the sandstone samples the application of stone strengtheners was shown to result in a confinement of the large pores within the outer layer of a few millimeters depth. Depending on the ferromagnetic contamination of the brick samples, the relaxation time distributions can be affected. The agreement of T2 relaxation time distributions and pore size distributions from mercury intrusion porosimetry was found to be better for the NMR-MOUSE sensors than for the homogeneous field measurements. This is true even for different brick samples, unless the content in ferromagnetic particles is very strong.  相似文献   

6.
This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.  相似文献   

7.
In this paper, it is shown how free induction decay signals recorded in the Earth’s magnetic field from water protons confined in porous media can be used to derive transversal relaxation times (T 2) and their distributions. After T 2 determination of six sintered glass samples with various pore sizes, the common theoretical model can be fitted to the data set. The T 2 distribution of water protons in a bimodal porous system is analyzed and compared to mercury porosimetry results. The implications for the calculation of pore sizes and pore size distributions of porous media by this method are discussed.  相似文献   

8.
We propose a new method for determining the Stark broadening of atomic emission lines using laser‐induced breakdown spectroscopy. The method allows the determination of the Stark broadening in non–optically thin plasmas, through the introduction of a correction for self‐absorption. Couples of lines of the same species are considered. If one of the Stark broadenings is known, the determination of the other does not require the measurement of the electron density of the plasma. Examples are given for the application of the proposed method to the measurement of the Stark broadening of several aluminum emission lines (Al I at 308.2 nm, Al I at 394.4 nm, and Al I at 396.2 nm).  相似文献   

9.
Silicon nanowires (SiNWs) were grown on an Au-coated Si(111) substrate at various gas pressures by very high frequency plasma enhanced chemical vapor deposition via the vapor–liquid–solid mechanism. The synthesized SiNWs were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy and photoluminescence (PL). The SiNWs were sharp needle-shaped and possessed highly crystalline core and oxide amorphous shell. As the gas pressure increases from 70 mtorr to 85 mtorr, the average diameter of the SiNWs decreases from 250 nm to 70 nm. Furthermore, the density of the nanowires increases with the gas pressure. The PL spectra revealed a peak at about 400 nm and a broadband emission at about 700 nm.  相似文献   

10.
核磁共振T2谱换算孔隙半径分布方法研究   总被引:4,自引:0,他引:4  
岩芯核磁共振T2谱和压汞分析数据均在一定程度上反映了岩石的孔隙结构特征,理论分析和二者频率分布图对比表明,这两组数据有较好的相关性,核磁共振T2谱能够换算为反映岩石孔隙结构特征的孔隙半径分布图. 本文应用最大相关性原理、最小二乘法及插值算法等数学方法,给出了一个改进的将T2谱换算为孔隙半径分布图的实用有效新方法,求得了T2弛豫时间与岩芯孔隙半径r之间的换算系数C,计算过程中着重对比了T2谱与压汞数据的主要分布区间,并考虑了压汞进汞饱和度小于100%对换算结果的影响. 天然砂岩岩芯核磁共振T2谱换算为孔隙半径分布图的实际应用效果表明,着重对比T2谱与压汞数据的主要分布区间,同时考虑压汞进汞饱和度小于100%对换算结果的影响是必要的,换算结果更加真实可信.  相似文献   

11.
The surface fractal dimensions of high-volume fly-ash cement pastes are evaluated for their hardening processes on the basis of mercury intrusion porosimetry (MIP) data. Two surface fractal models are retained: Neimark's model with cylindrical pore hypothesis and Zhang's model without pore geometry assumption. From both models, the logarithm plots exhibit the scale-dependent fractal properties and three distinct fractal regions (I, II, III) are identified for the pore structures. For regions I and III, corresponding to the large (capillary) and small (C-S-H inter-granular) pore ranges respectively, the pore structure shows strong fractal property and the fractal dimensions are evaluated as 2.592-2.965 by Neimark's model and 2.487-2.695 by Zhang's model. The fractal dimension of region I increases with w/b ratio and hardening age but decreases with fly-ash content by its physical filling effect; the fractal dimension of region III does not evolve much with these factors. The region II of pore size range, corresponding to small capillary pores, turns out to be a transition region and show no clear fractal properties. The range of this region is much influenced by fly-ash content in the pastes. Finally, the correlation between the obtained fractal dimensions and pore structure evolution is discussed in depth.  相似文献   

12.
A technique is proposed for determining the pore-size distribution based on measuring the dependence of total reflectance in the domain of partial transparency of a material. An assumption about equality of scattering-coefficient spectra determined by solving the inverse radiation transfer problem and by theoretical calculation with the Mie theory is used. The technique is applied to studying a quartz ceramics. The poresize distribution is also determined using mercury and gas porosimetry. All three methods are shown to produce close results for pores with diameters of <180 nm, which occupy ~90% of the void volume. In the domain of pore dimensions of >180 nm, the methods show differences that might be related to both specific procedural features and the structural properties of ceramics. The spectral-scattering method has a number of advantages over traditional porosimetry, and it can be viewed as a routine industrial technique.  相似文献   

13.
Polyvinyl alcohol nanoporous nanocomposite hydrogels containing various levels of Na-montmorillonite were prepared by a cyclic freezing–thawing technique. An exfoliated morphology of silicate layers was observed for the nanocomposite hydrogels. The uniaxial tensile test indicated that the tensile modulus and tensile strength of the nanocomposite hydrogels increased with increasing Na-montmorillonite content, while their elongation-at-break values decreased. The results showed that by adding 15 wt% of montmorillonite to polyvinyl alcohol hydrogels, the molecular weight of polymer chains between two adjacent cross-links decreased to 56% and the effective cross-linking density increased up to 353%. It is also indicated that all nanocomposite hydrogel samples had nanoscale pore diameters and network mesh sizes less than 30 nm. The nanoporous structure of the nanocomposite hydrogels was confirmed by transmission electron microscopy observations and mercury intrusion porosimetry tests.  相似文献   

14.
Nano-Li2FeSiO4/C composites were prepared from three kinds of nano-SiO2 (their particle sizes are 15?±?5, 30?±?5, and 50?±?5 nm, respectively) by a traditional solid-state reaction method. The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), elementary analyzer, Brunauer–Emmett–Teller (BET) analysis, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. XRD results reveal that nano-Li2FeSiO4 composites fabricated from nano-SiO2 (smaller than 30 nm) have less impurity. SEM results indicate that the particle size of nano-Li2FeSiO4 composites is nearly accord with the particle size of nano-SiO2. BET analysis indicates that the specific surface areas of LFS15, LFS30, and LFS50 are 35.10, 35.27, and 26.68 m2 g, respectively, and the main pore size distribution of LFS15, LFS30, and LFS50 are 1.5, 5.5, and 10 nm, respectively. Electrochemical measurements indicate that nano-Li2FeSiO4 composites prepared from nano-SiO2 of 30?±?5 nm have the best electrochemical performance among the three samples.  相似文献   

15.
A series of photochromic phosphotungstic acid (PWA)/SiO2 composites were synthesized using the sol-gel method. Depending on the feeding schedule of PWA during synthesis, the size of the formed PWA/SiO2 particles varied considerably from as small as 1.2 nm to ca. 10 nm. With decreasing silica particle size, the total contact area/interaction between SiO2 and PWA increases, as revealed by FT-IR and solid-state 29Si-NMR analyses. Particularly, when the size of PWA/SiO2 is ~1 nm, crystallization of PWA is inhibited, and PWA presents as amorphous molecular entities distributing uniformly in the SiO2 host, which is in evidence in the XRD spectroscopy and HR-TEM imaging. In contrast, substantial crystallization of PWA takes place when PWA/SiO2 particles are as large as 10 nm, in which case less amount of surface free Si-OH is available for PWA to make bonds with. Photochromism occurs activated by ultraviolet light irradiation. The rate of coloration/bleaching is found to depend strongly on the particle size of PWA/SiO2; specifically, the rate increases twice when the particle size is reduced from 10 nm to 1.2 nm.  相似文献   

16.
Yusheng Liu  Yuxiao Wang  Jing Li 《Ionics》2016,22(9):1681-1686
Molecular dynamics simulations were carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like Au metal nanopore with a pore size of 5.0 nm. The calculations show that the mass and number densities of the confined ILs are oscillatory; the solid-like high density layers are formed in the vicinity of the metal surface. The orientational investigation shows that the imidazolium ring of [BMIM] cations prefers to form a small tilt angle with the pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are remarkably slower than those observed in bulk systems. Our results suggest that the confinement of the Au nanopore can strongly affect the structural and dynamical properties of the confined ILs.  相似文献   

17.
The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au–Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol–gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV–Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.  相似文献   

18.
Lanthanum-zirconium nano-powders were synthesized by molten salts method. Nanostructured lanthanum-zirconium coatings were deposited by air plasma spraying. Scanning electron microscopy and X-ray diffraction were carried out to analyze the as-sprayed coatings and powders. The pore size distribution and buck density of coatings were identified by mercury intrusion porosimetry. The thermophysical properties of the nanostructured coatings were also examined through laser flash technique and differential scanning calorimetry. The results demonstrate that the as-sprayed nanostructured coatings consist of the pyrochlore-type phase. The as-sprayed nanostructured lanthanum-zirconium coatings have a very low porosity. The thermal conductivity of the as-sprayed nanostructured lanthanum-zirconium coating is lower than that of the conventional coating between 200 °C and 950 °C, but when the temperature between 950 °C and 1300 °C, the result is reverse.  相似文献   

19.
Both direct and indirect methods for determining soil–water characteristic curves rely on determination of some empirical coefficients, which may not necessarily represent real microscopic mechanisms. Proton nuclear magnetic resonance (NMR) is a powerful tool for investigating water content and their interaction with solid particles in porous media. The NMR technique is widely used in food science and petroleum. In the present study, proton NMR spin–spin relaxation time (T 2) distribution measurement is integrated with a Tempe apparatus to characterize the hydraulic processes of unsaturated soils, shedding insights into the microscopic mechanisms of pore water distribution and migration in the soil during hydraulic cycles. It is revealed that during a drying process the drainage of pore water occurs sequentially from larger pores to smaller pores, whereas in a wetting process the water invades into the soil sequentially from smaller pores to larger pores. A new procedure is developed which can be used to determine the pore size distribution of the soil based on the NMR T 2 distribution measurements; compared to the traditional methods, the new method is rapid and non-destructive. The new procedure is validated by comparing the new result with the measurement of the mercury intrusion porosimetry.  相似文献   

20.
Cerium-doped calcium sulphide nanoparticles were synthesized using the solid state diffusion method. The formed nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed a cubic CaS phase with an average grain size of 53 nm of the formed samples. The TEM image showed non-agglomerated particles with an average size of 60 nm, which is in close agreement with the XRD result. The PL-emission spectrum showed peaks at 506 and 565 nm due to the transition from the excited state to the ground state of Ce3+. The effect of etching has been studied on the luminescent properties of CaS:Ce phosphors. With an increase in the etching time there is decrease in the size of the particles, as a result of which the PL spectrum showed a slight blue shift. The UV-visible absorption spectrum also showed a blue shift with an increase in etching time, which is in agreement with the nanosize effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号