首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We argue that the starting point of Kaluzas idea of unifying electrodynamics and gravity was the analogy between gravitation and electromagnetism which was pointed out by Einstein and Thirring. It seems that Kaluzas attention was turned to this point by the three papers on the Lense–Thirring effect and the analogy between gravitation and electromagnetism which were published a short time before Kaluzas paper was submitted. We provide here also an English translation of the third of these papers (Phys. Zeits. 19: 204, 1918).  相似文献   

2.
A general scheme is presented for using different numbers of ‘time slices’ for different degrees of freedom in a path integral evaluation of the Boltzmann operator for a large molecular system. This will be particularly useful, for example, in evaluating the ‘quantum instanton’ rate constant [cf. W.H. Miller, Y. Zhao, M. Ceotto, S. Yang. J. Chem. Phys., 119, 1329 (2003)] for H atom transfer reactions, or any applications involving atoms with largely differing masses.  相似文献   

3.
Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their implementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312 (2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)]. A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked, News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community and among the general public by misinterpreting the implications of this work. The present article proves the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys. Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably superior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev. A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383 (1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was not previously known).  相似文献   

4.
V. A. Belyakov 《JETP Letters》1999,70(12):811-818
It has been predicted by Shelton and Shen [Phys. Rev. A 5, 1867 (1972)] and observed by Kajikawa et al. [Jpn. J. Appl. Phys. Lett. 31, L679 (1992)] and Yamada et al. [Appl. Phys. B 60, 485 (1995)] that the efficiency of nonlinear-optical frequency conversion increases significantly in a nonlinear periodic medium and, accordingly, the intensity of the generated harmonic increases as the fourth power of the sample thickness, as opposed to the square law observed in homogeneous media. In this paper it is shown that the same enhancement of the efficiency of nonlinear-optical frequency conversion in a nonlinear periodic medium can be achieved using an ordinary pump wave in the form of a plane wave when both the pump wave and the harmonics are diffracted by the periodic structure of the nonlinear medium. The phenomenon is analyzed quantitatively in the example of second-harmonic generation. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 12, 793–799 (25 December 1999)  相似文献   

5.
The roughening of interfaces moving in inhomogeneous media is investigated by numerical integration of the phenomenological stochastic differential equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)] with quenched noise (QKPZ) [Phys. Rev. Lett. 74, 920 (1995)]. We express the evolution equations for the mean height and the roughness into two contributions: the local and the lateral one in order to compare them with the local and the lateral contributions obtained for the directed percolation depinning models (DPD) introduced independently by Tang and Leschhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev A 45, R8313 (1992)]. These models are classified in the same universality class of the QKPZ although the mechanisms of growth are quite different. In the DPD models the lateral contribution is a coupled effect of the competition between the local growth and the lateral one. In these models the lateral contribution leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. Received 7 April 2000 and Received in final form 7 March 2001  相似文献   

6.
Numerous papers have been devoted to the investigation of striations in inert gases at low pressures (p⩽2 Torr) and small currents (i<100 mA) [A. V. Nedospasov, Sov. Phys. Usp. 11, 174 (1968); L. Pekarek, Sov. Phys. Usp. 11, 188 (1968); N. L. Oleson and A. W. Cooper, Adv. Electron. Electron Phys. 24, 155 (1968); P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys. Usp. 23, 813 (1980)]. Since the nature of striations is determined under these conditions by the nonlocal kinetics of the electrons in spatially periodic fields [L. D. Tsendin, Sov. J. Plasma Phys. 8, 228 (1982)], an investigation of the electron distribution function in space and time would be very interesting. The purpose of the present work is to experimentally investigate the potential profiles and distribution functions in S and P striations and to analyze the mechanism which shapes the distribution functions for striations of these types. Zh. Tekh. Fiz. 67, 14–21 (September 1997)  相似文献   

7.
By using integral representations the perturbation expansion and the Bogoliubov inequality in nonextensive Tsallis statistics are investigated in a unified way. This procedure extends the analysis performed recently by Lenzi et al. [Phys. Rev. Lett. 80, 218 (1998)] to the quantum (discrete spectra) case, for q<1. An example is presented in order to illustrate the method. Received 19 November 1998  相似文献   

8.
Klein-Gordon, Maxwell and Dirac fields are studied in quasiregular spacetimes, those space-times containing a classical quasiregular singularity, the mildest true classical singularity [G. F. R. Ellis and B. G. Schmidt, Gen. Rel. Grav. 8, 915 (1977)]. A class of static quasiregular spacetimes possessing disclinations and dislocations [R. A. Puntigam and H. H. Soleng, Class. Quantum Grav. 14, 1129 (1997)] is shown to have field operators which are not essentially self-adjoint. This class of spacetimes includes an idealized cosmic string, i.e. a four-dimensional spacetime with a conical singularity [L. H. Ford and A. Vilenkin, J. Phys. A: Math. Gen. 14, 2353 (1981)] and a Gal'tsov/Letelier/Tod spacetime featuring a screw dislocation [K. P. Tod, Class. Quantum Grav. 11, 1331 (1994); D. V. Gal'tsov and P. S. Letelier, Phys. Rev. D 47, 4273 (1993)]. The definition of G. T. Horowitz and D. Marolf [Phys. Rev. D52, 5670, (1995)] for a quantum-mechanically singular spacetime is one in which the spatial-derivative operator in the Klein-Gordon equation for a massive scalar field is not essentially self-adjoint. The definition is extended here, in the case of quasiregular spacetimes, to include Maxwell and Dirac fields. It is shown that the class of static quasiregular spacetimes under consideration is quantum-mechanically singular independent of the type of field.  相似文献   

9.
A method is given to obtain closed form formulas for the energy and forces for an aggregate of charges interacting via a logarithmic interaction under periodic boundary conditions. The work done here is a generalization of Glasser's results [J. Math. Phys., 15, 188 (1974)] and is obtained with a different and simpler method than that by Stremler [J. Math. Phys., 45, 3584 (2004)]. The simplicity of the formulas derived here makes them extremely convenient in a computer simulation.  相似文献   

10.
We interpret measurements of the Reynolds number dependence of the torque in Taylor-Couette flow by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] and of the pressure drop in pipe flow by Smits and Zagarola [Phys. Fluids 10, 1045 (1998)] within the scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)], developed in the context of thermal convection. The main idea is to split the energy dissipation into contributions from a boundary layer and the turbulent bulk. This ansatz can account for the observed scaling in both cases if it is assumed that the internal wind velocity introduced through the rotational or pressure forcing is related to the external (imposed) velocity U, by with and for the Taylor-Couette (U inner cylinder velocity) and pipe flow (U mean flow velocity) case, respectively. In contrast to the Rayleigh-Bénard case the scaling exponents cannot (yet) be derived from the dynamical equations. Received 9 September 2000  相似文献   

11.
Experience has shown that theoretically determined lifetimes of bulk states of hot electrons in real metals agree quantitatively with the experimental ones, if theory fully takes into account the crystal structure and many-body effects of the investigated metal, i.e., if the Dyson equation is solved at the ab initio level and the effective electron–electron interaction is determined beyond the plasmon-pole approximation. Therefore the hitherto invoked transport effect [Knoesel et al.: Phys. Rev. B 57, 12812 (1998)] does not seem to exist. In this paper we show that likewise neither virtual states [Hertel: et al. Phys. Rev. Lett. 76, 535 (1996)] nor damped band-gap states [Ogawa: et al.: Phys. Rev. B 55, 10869 (1997)] exist, but that the hitherto unexplained d-band catastrophe in Cu [Cu(111), Cu(110)] can be naturally resolved by the concept of the transient exciton. This is a new quasiparticle in metals, which owes its existence to the dynamical character of dielectric screening at the microscopic level. This means that excitons, though they do not exist under stationary conditions, can be observed under ultrafast experimental conditions. Received: 30 March 2000 / Accepted: 2 September 2000 / Published online: 12 October 2000  相似文献   

12.
The M X-ray production differential cross sections in Re, Bi and U elements have been measured at the 5.96 keV incident photon energy in an angular range 135°–155°. The measurements were performed using a 55Fe source and a Si(Li) detector. The present results contradict the predictions of Cooper and Zare [Atomic Collision Processes, Gordon and Breach, New York (1969)] and experimental results of Kumar et al. [J. Phys. B: At. Mol. Opt. 34, 613 (2001)]. that, after photoionization of inner shells, the vacancy state has equal population of magnetic substates and the subsequent X-ray emission is isotropic, but confirm the predictions of the calculations of Flügge et al. [Phys. Rev. Lett. 29, 7 (1972)] and experimental results of Sharma and Allawadhi [J. Phys. B: At. Mol. Opt. 32, 2343 (1999)] and Ertugrul [Nucl. Instrum. Meth. B 119, 345 (1996)]. Total M X-ray production cross sections from the decay at the 5.96 keV photon energies are found to be in good agreement with the calculated theoretical results using the theoretical values of M shell photoionization cross section.  相似文献   

13.
The temperature and field dependences χ(T,H) in La2CuO4+δ single crystals with δ<0.015 have been investigated in magnetic fields 0.1<H<450 Oe by the differential magnetic susceptibility method. It was found that under oxygen doping conditions ferromagnetic regions are formed. These regions produce a characteristic curve of the magnetic susceptibility χ(T,H), which is observed only in magnetic fields of less than 50 Oe. This can be explained by the formation of ferrons [A. Aharony et al. Phys. Rev. Lett. 60, 1330 (1988); L. I. Glazman and A. S. Ioselevich, Z. Phys. B 80, 268 (1990)] in an antiferromagnetic matrix. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 3, 152–155 (10 August 1996)  相似文献   

14.
We show that the criticism [Eur. Phys. J. D 49, 167 (2008)] of our empirical formula for electron-impact ionization of atomic ions [J. Phys B. 33, 5025 (2000)] is unjustified.  相似文献   

15.
A critical comment was made to the electron energy-loss spectroscopy [Z. Phys. B-Condensed Matter75, 421 (1989)] which questionedn-type superconductivity in Nd2–xCexCuO4. Comparative oxygen-K absorption and oxygen 1s photoemission spectroscopies for Nd2–xCexCuO4 and Bi2Sr2CaCu2O8 have shown that these two superconductors are classified into two different categories.  相似文献   

16.
The article by Villain [Z. Phys. B — Condensed Matter33, 31 (1979)] is discussed and a modified magnetic phase diagram is suggested for the spinel system (AB2O4) in which theA andB sites are partially (or completely) occupied by magnetic atoms. This diagram takes into account the antiferromagnetic exchange interactionsJ AA,J BB andJ AB between nearest neighbor cations of various types. Regions of paramagnetic, antiferromagnetic, ferrimagnetic and possible spin glass behaviour are indicated on the diagram.Supported by the National Science Foundation under Grant ISP-80-11451  相似文献   

17.
We previously observed that an intrinsic staking fault shrunk through a glide of a Shockley partial dislocation terminating its lower end in a hard-sphere crystal under gravity coherently grown in ?001? by Monte Carlo simulations [Mori et al., Molec. Phys. 105, 1377 (2007)]; it was an answer to a one-decade long standing question why the stacking disorder in colloidal crystals reduced under gravity [Zhu et al., Nature 387, 883 (1997)]. Here, we present an elastic energy calculation; in addition to the self-energy of the partial dislocation [Mori et al., Prog. Theor. Phys. Suppl. 178, 33 (2009)] we calculate the cross-coupling term between elastic field due to gravity and that due to a Shockley partial dislocation. The cross-term is an increasing function of the linear dimension R over which the elastic field expands, showing that a driving force arises for the partial dislocation moving toward the upper boundary of a grain.  相似文献   

18.
There exist different kinds of averaging of the differences of the energy–momentum and angular momentum in normal coordinates NC(P) which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [J. Garecki, Rep. Math. Phys. 33, 57 (1993); Int. J. Theor. Phys. 35, 2195 (1996); Rep. Math. Phys. 40, 485 (1997); J. Math. Phys. 40, 4035 (1999); Rep. Math. Phys. 43, 397 (1999); Rep. Math. Phys. 44, 95 (1999); Ann. Phys. (Leipzig) 11, 441 (2002); M.P. Dabrowski and J. Garecki, Class. Quantum. Grar. 19, 1 (2002)] giving the canonical superenergy and angular supermomentum tensors. In this paper we present another averaging of the differences of the energy–momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy–momentum and angular momentum densities. We have called these tensorial quantities “the averaged relative energy–momentum and angular momentum tensors”. These tensors are very closely related to the canonical superenergy and angular supermomentum tensors and they depend on some fundamental length L > 0. The averaged relative energy–momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to coordinate independent analysis (local and in special cases also global) of this field. Up to now we have applied the averaged relative energy–momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general, only homogeneous) universes. The obtained results are interesting, e.g., the averaged relative energy density is positive definite for the all Friedman and other universes which have been considered in this paper.   相似文献   

19.
The thermal efficiency of the kinesin cycle at stalling is presently a matter of some debate, with published predictions ranging from 0 [Phys. Rev. Lett. 99, 158102 (2007); Phys. Rev. E 78, 011915 (2008)] to 100% [in Molecular Motors, edited by M. Schliwa (Wiley-VCH Verlag GmbH, Weinheim (2003), p. 207]. In this note we attemp to clarify the issues involved. We also find an upper bound on the kinesin efficiency by constructing an ideal kinesin cycle to which the real cycle may be compared. The ideal cycle has a thermal efficiency of less than one, and the real one is less efficient than the ideal one always, in compliance with Carnot’s theorem.  相似文献   

20.
P.-O. Westlund 《Molecular physics》2013,111(18):2251-2255
For immobilized protein the water proton T 1-NMRD profile displays three enhanced relaxation peaks (QP). For slow tumbling proteins these relaxation peaks are not experimentally observed. However, the theoretically determined QP effect on the amide proton T 1-NMRD profile displays a distorted Lorentzian dispersion profile. The question arises as to whether there is also a distortion of the water-proton T 1-NMRD profile due to QP. The model of Sunde and Halle [J. Magn. Reson. 203, 257 (2010)] predicts a decreasing QP relaxation contribution and, with the aid of a model for tumbling proteins [P.-O. Westlund, Phys. Chem. Chem. Phys, 12, 3136 (2010)], it is shown that the QP effect is absent in water-proton T 1-NMRD profiles for slow tumbling proteins with τR?I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号