首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Aiming at the functionalization of surfaces with terpyridine anchors for the coordinative deposition of additional layers, mixed self-assembled monolayers (SAMs) were prepared from binary solutions of 12-(2,2':6',2″-terpyridine-4'-yl)dodecane-1-thiol (TDT) and 1-decanethiol (DT). The SAMs and the order of the constituting molecules were analyzed by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and time-of-flight-secondary ion mass spectrometry (ToF-SIMS). The composition of the (TDT/DT)-SAMs and with it the surface density of terpyridyl groups correlates linearly with the relative concentrations of the two compounds in the solution used for depositing them. In marked contrast, the amount of terpyridine-coordinated Pd(II) ions significantly deviates from this trend with an optimum at a 1:3 ratio of TDT/DT. This indicates a major fraction of the terpyridines in TDT-rich SAMs not to be accessible for Pd(II) ion coordination. In agreement, NEXAFS spectroscopy reveals the alkyl backbones in TDT-rich SAMs not to be ordered, while they are preferentially upright oriented in the optimal 1:3-(TDT/DT)-SAMs. We interpret this in terms of terpyridine backfolding in TDT-rich SAMs, while they are located in accessible positions on top of the SAM in the 1:3-(TDT/DT)-SAM. While the alkyl backbones in the 1:3-(TDT/DT)-SAM are ordered, NEXAFS spectroscopy shows the terpyridyl groups not to have a preferential orientation in this SAM and thus retain enough flexibility to adjust to molecules that are deposited on top of the mixed SAM. In conclusion, the novel SAM does not undergo phase separation and consists predominantly of intermixed phases with adjustable surface density of quite flexible terpyridine anchor groups. The terpyridine-Pd(II) anchors are not only available for a future deposition of the next layer, but the metal ions also represent a sensitive probe for the accessibility of the terpyridyl groups.  相似文献   

2.
Alkanethiol self-assembled monolayers (SAMs) have been used in electrochemical microfabrication processes. The reductive desorption potential of alkanethiol SAMs, Edes, can be comparable to, greater than, or less than the metal reduction potential during electrodeposition, Emet. As a result, the SAM layer can passivate the surface or desorb simultaneously with metal deposition. We show that these electrochemical traits can be combined with a rastering microjet electrode to pattern SAMs directly and create patterned metal films without lithography steps. For the case of copper deposition on 1-octanethiol (OT)- and 1-dodecanethiol (DT)-coated substrates, Edes is significantly negative of Emet, resulting in high-resolution metal patterns with poor nucleation and poor adhesion to the substrate. However, nickel patterns deposited on 1-butanethiol (BT), OT, and DT have traits similar to bare gold (excellent nucleation and adhesion) because Edes is positive of Emet. Substrates with SAMs also suppress adventitious chemistries that occur distant from the rastering microjet electrode, such as oxygen reduction, making samples more corrosion resistant and improving the overall patterning process that we call electrochemical printing.  相似文献   

3.
Hou SF  Yang KS  Fang HQ  Chen HY 《Talanta》1998,47(3):561-567
A novel and robust amperometric enzyme electrode for the determination of glucose was constructed by immobilizing glucose oxidase (GOD) and Os(bpy)(2)Cl-poly(4-vinyl)pyridine (Os-PVP) complex multilayers on thiol self-assembled monolayers surface. The apparent Michaelis-Menton constant K(m)' increased with increasing the number of Os-PVP/GOD multilayers. The concentration range of linear response and detection limit were 0.1-10 and 0.05 mM, the interference of ascorbic acid and uric acid were eliminated by the presence of SAMs and the enzyme electrodes were stable over 3 weeks. The preparation technique may be useful for controlling the performance of multilayer enzyme electrodes by changing the enzyme content.  相似文献   

4.
Electrochemical deposition of metals (platinum or gold) only on top of an organothiolate, 1,4-benzenedimethanethiol (BDMT) or hexanedithiol (HDT), self-assembled monolayer (SAM) on a Au(111) substrate was achieved by electrochemical reduction of PtCl(4)(2-) or AuCl(4)(-) ion, which was preadsorbed on one free thiol end group of the dithiol SAM formed on a Au surface, in a metal-ion-free sulfuric acid solution at potentials more negative than the reduction potential of the metal ion. Angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurement after the reduction of preadsorbed PtCl(4)(2-) ion on BDMT/Au(111) electrode showed the presence of Pt not underneath but on top of the BDMT SAM. After a negative potential scan of the Pt/BDMT/Au(111) electrode to -1.30 V in 0.1 M KOH solution, a typical cyclic voltammogram of a clean Au(111) electrode was obtained, showing that the BDMT SAM with a Pt layer was reductively desorbed. These results proved that a Pt-BDMT SAM-Au substrate sandwich structure without a short circuit between the two metals was successfully constructed by this technique. Furthermore, a decanethiol (DT) monolayer was constructed on a Au layer, which was formed by the reduction of preadsorbed AuCl(4)(-) ion on HDT/Au(111) electrode. The formation of DT/Au/HDT/Au(111) structure was confirmed as two cathodic peaks corresponding to reductive desorption of DT from Au on top of the HDT/Au(111) at -0.97 V and that of Au/ HDT from Au(111) at -1.12 V were observed when potential was scanned negatively to -1.35 V.  相似文献   

5.
A series of multithiol-functionalized zinc porphyrins has been prepared and characterized as self-assembled monolayers (SAMs) on Au. The molecules, designated ZnPS(n) (n = 1-4), contain from one to four [(S-acetylthio)methyl]phenylethynylphenyl groups appended to the meso-position of the porphyrin; the other meso-substituents are phenyl groups. For the dithiol-functionalized molecules, both the cis- and the trans-appended structures were examined. The ZnPS(n) SAMs were investigated using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPS(n) SAMs. (1) The ZnPS(n) molecules bind to the Au surface via a single thiol regardless of the number of thiol appendages that are available per molecular unit. (2) The porphyrins in the ZnPS(3) and ZnPS(4) SAMs bind to the surface in a more upright orientation than the porphyrins in the ZnPS(1), cis-ZnPS(2), and trans-ZnPS(2) SAMs. The porphyrins in the ZnPS(3) and ZnPS(4) SAMs are also more densely packed than those in the cis-ZnPS(2) and trans-ZnPS(2) SAMs. The packing density of the ZnPS(3) and ZnPS(4) SAMs is similar to that of the ZnPS(1) SAMs, despite the larger size of the molecules in the former SAMs. (3) The thermodynamics and kinetics of electron transfer are generally similar for all of the ZnPS(n) SAMs. The general similarities in the electron-transfer characteristics for all of the SAMs are attributed to the similar binding motif.  相似文献   

6.
It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.  相似文献   

7.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

8.
In this paper, carbamate-based self-assembled monolayers (SAMs) of alkanethiolates on gold were suggested as a versatile platform for release of amine-bearing molecules in response to the electrical signal. The designed SAMs underwent the electrochemical oxidation on the gold surface with simultaneous release of the amine molecules. The synthesis of the thiol compounds was achieved by coupling isocyanate-containing compounds with hydroquinone. The electroactive thiol was mixed with 11-mercaptoundecanol [HS(CH(2))(11)OH] to form a mixed monolayer, and cyclic votammetry was used for the characterization of the release behaviors. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), indicating the irreversible conversion from carbamate to hydroquinone groups with simultaneous release of the amine molecules. The analysis of ToF-SIMS further indicated that the electrochemical reaction on the gold surface successfully released amine molecules.  相似文献   

9.
The application of novel electrosynthesized polydopamine (PDA)-imprinted film as a recognition element for the capacitive sensing of nicotine is reported. The PDA-imprinted film was electropolymerized directly on the gold electrode surface in the presence of nicotine without an additional self-assembled thiol sublayer. The compact PDA film has various functional groups that aid the imprinting procedure. Furthermore, the film shows good capacitive response since it is insulating in nature and ultrathin. The sensor’s linear response range for nicotine was between 1–25 μmol L−1, with a detection limit of 0.5 μmol L−1. The proposed molecularly imprinted polymer capacitive (MIPC) sensor exhibited good selectivity for nicotine. The reproducibility and repeatability of the MIPC senor were all found to be satisfactory. The results from sample analysis confirmed the applicability of the MIPC sensor to quantitative analysis.  相似文献   

10.
Despite the numerous studies on the self‐assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol–gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X‐ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol–gold interface. The long‐chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short‐chain alkylthiol SAMs were adsorbed more strongly than long‐chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol–gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single‐molecule adsorption than self‐assembly, whereas for long chains, interactions between alkyl chains drive the system to self‐assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur–gold interface.  相似文献   

11.
A strontium Schiff's base complex (SS) can be used as a suitable ionophore to prepare a sulfate-selective PVC-based membrane electrode. The use of oleic acid (OA) and hexadecyltrimethylammonium bromide (HTAB), as additives, and nitrobenzen (NB), dibutyl phthalate (DBP) and benzyl acetate (BA) as solvent mediators, were investigated. The best performance was observed with a membrane composition PVC: NB: SS: HTAB of 30%: 62%: 5%: 3% ratio. The resulting sensor works well over a wide concentration range (1.0 x 10(-2)-1.0 x 10(-6) M) with a Nernstian slope of -29.2 mV per decade of sulfate activity over a pH range 4.0-7.0. The limit of detection of the electrode is 5 x 10(-7) M. The proposed sensor shows excellent discriminating ability toward SO4(2-) ions with regard to many anions. It has a fast response time of about 15 s. The membrane electrode was used to the determination of zinc in zinc sulfate tablets. The sensor was also used as an indicator electrode in the potentiometric titration of SO4(2-) against barium ion.  相似文献   

12.
Zheng M  Li P  Yang C  Zhu H  Chen Y  Tang Y  Zhou Y  Lu T 《The Analyst》2012,137(5):1182-1189
A fast, simple square wave potential method is developed for the fabrication of a three-dimensional (3D) nanoporous gold (NPG) film. The nanostructures are characterized and confirmed by scanning electronic microscopy (SEM) and cyclic voltammetry (CV). The nanostructures modified with self-assembled monolayers (SAMs) are employed as an electrode substrate to immobilize inorganic iron(III) ion. After immobilization, iron(III) ion undergoes an effective direct electron transfer reaction with a pair of well-defined redox peak at -256 ± 10 mV (pH 7.0). The iron(III) ion modified electrode displays the excellent electrocatalytic performance for reduction of hydrogen peroxide, and thus can be used as an electrochemical sensor for detecting hydrogen peroxide with a low detection limit (1.0 × 10(-9) M), a wide linear range (9.0 × 10(-7)~5.0 × 10(-4) M), as well as good stability, selectivity and reproducibility.  相似文献   

13.
Xu  Guilin  Yang  Lingling  Zhong  Min  Li  Chen  Lu  Xiaojing  Kan  Xianwen 《Mikrochimica acta》2013,180(15):1461-1469

We have combined the molecular imprinting and the layer-by-layer assembly techniques to obtain molecularly imprint polymers (MIPs) for the electrochemical determination of p-nitrophenol (p-NPh). Silica microspheres functionalized with thiol groups and gold nanoparticles (Au-NPs) were assembled on a gold electrode surface layer by layer. The electrode was then immersed into a solution of pyrrole and p-NPh (the template), and electropolymerization led to the creation of a polymer-modified surface. After the removal of the silica spheres and the template, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) were employed to characterize the surface. The results demonstrated the successful fabrication of macroporous MIPs embedded with Au-NPs on the gold electrode. The effects of monomer concentration and scan rate on the performance of the electrode were optimized. Excellent recognition capacity is found for p-NPh over chemically similar species. The DPV peak current is linearly related to concentration of p-NPh in the 0.1 μM to 1.4 mM range, with a 0.1 μM limit of detection (at S/N = 3).

Molecularly imprinted polymers (MIPs) and nanomaterials were combined to prepare a novel macroporous structured MIPs based electrochemical sensor for the investigation of an environmental pollutant, p-nitrophenol (p-NPh). The sensor exhibited a fast binding dynamics, good specific adsorption capacities, and high selective recognition to p-NPh.

  相似文献   

14.
The electrochemical behavior of three heteroaromatic thiols (MBs) (2-mercaptobenzimidazole (MBI), 2-mercaptobenzothiazole (MBT), and 2-mercaptobenzoxazole (MBO)) on a Au(111) surface has been investigated by electrochemical scanning tunneling microscopy (ECSTM) and cyclic voltammetry (CV) in 0.1 M HClO(4) solution. All three thiols form oriented molecular cluster lines along the reconstruction line direction at 0.55 V. With the electrode potential shifting negatively, the molecules undergo a disordered-ordered structural transition. Molecularly resolved STM images show that all three molecules form striped adlayers in the desorption region on the Au(111) surface. The different heteroatoms in the heteroaromatic rings result in different electrochemical behavior of the MB self-assembled monolayers (SAMs). MBI, MBT, and MBO are proposed to interact with the substrate via the S-Au bonds from thiol group and the coordination interaction of N, S, and O with the substrate from the heteroaromatic ring, respectively. These results provide direct evidence of the electrochemical behavior and the adlayer structures of MB SAMs on the Au electrode.  相似文献   

15.
We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications.  相似文献   

16.
研究了1,2,5-硒二唑并[3,4-b]吡啶(SPb),1,2,5-硒二唑并[3,4-d]嘧啶-7-(5H,6H)酮(SPO),1,2,5.硒二唑并[3,4.d]嘧啶-5,7-(4H,6H)二酮(SPDO)等多氮硒杂环化合物在溶液中及其在金表面的自组装单分子膜的电化学性质。以Fe(CN)6^3-/4-为离子探针,利用CV法观察了Fe(CN)6^3-/4-氧化还原峰的变化。结果表明,在溶液中,电极过程主受吸附控制;自组装膜的电化学信号与其溶液相似,在-600mV左右都有一还原峰,表明该类化合物有相似的组装模式,其中SPO和SPDO在金表面形成了致密的单分子膜,有效地封闭了表面与溶液之间的电子交换和传递。  相似文献   

17.
A new method based on the electrochemical oxidation of thiols was used to easily generate multilayer assemblies of coordination complexes on a gold surface. For this purpose, two complexes bearing two anchoring groups for surface attachment have been prepared: [Ru(tpySH)(2)](2+) (1) and [Fe(tpySH)(2)](2+) (2) (tpySH = 4'-(2-(p-phenoxy)ethanethiol)-2,2':6',2″-terpyridine). Cyclic voltammetry of 1 in CH(3)CN exhibits two successive oxidation processes. The first is irreversible and attributed to the oxidation of the thiol substituents, whereas the second is reversible and corresponds to the 1 e(-) metal-centered oxidation. In the case of 2 both processes are superimposed. Monolayers of 1 or 2 have been formed on gold electrodes by spontaneous adsorption from micromolar solutions of the complexes in CH(3)CN. SAMs (self-assembled monolayers) exhibit redox behavior similar to the complexes in solution. The high surface coverage value obtained (Γ = 6 × 10(-10) and 4 × 10(-10) mol cm(-2) for 1 and 2, respectively) is consistent with a vertical orientation for the complexes; thus, one thiol is bound to the gold electrode, with the second unreacted thiol moiety exposed to the outer surface. Successive cyclic voltammetry induced a layer-by-layer nanostructural growth at the surface of the SAMs, and this is presumably due to the electrochemical formation of disulfide bonds, where the thiol moieties play a double role of both an anchoring group and an electroactive coupling agent. The conditions of the deposition are studied in detail. Modified electrodes containing both 1 and 2 alternatively can be easily prepared following this new approach. The film proved to be stable, displaying a similar current/voltage response for more than 10 repeating cycles in oxidation up to 0.97 V vs Ag/AgNO(3) (10(-2) M).  相似文献   

18.
A new thiol-derivatized metalloporphyrin, 5-{3-methoxyl-4-(4-mercaptobutoxy)}phenyl-10,15,20-triphenylporphyrincobalt (MBPPCo), has been synthesized. The electrochemical behavior of unitary or binary self-assembled monolayers (SAMs) of MBPPCo and thiols with carboxylic terminal groups was investigated using Fe(CN)6 3−/4− and ascorbic acid (AA) as probe species. The binary modified electrode showed a small increase in peak current but a large decrease in overpotential. However, in anionic electroactive species [Fe(CN)6 3−/4− or AA], either positively charged MBPPCo or negatively charged thiol SAMs solely, slow electron transfer kinetics was obtained and the possible reasons for the discrepancy are discussed.  相似文献   

19.
A novel capacitive sensor based on electropolymerized molecularly imprinted polymer (MIP) for thiopental detection is described. The molecularly imprinted film as a recognition element was prepared by electropolymerization of phenol on a gold electrode in the presence of thiopental (template). Cyclic voltammetry and capacitive measurements were used for characterization and evaluation of the polymeric film. The template molecules were removed from the modified electrode surface by washing with an ethanol:water solution. The sensor’s linear response range was between 3 and 20 µM, with a detection limit of 0.6 µM. The proposed sensor exhibited good selectivity, reproducibility. Satisfactory results were obtained in the direct detection of real samples.  相似文献   

20.
Jena BK  Raj CR 《Talanta》2008,76(1):161-165
Gold nanoparticle based nanostructured electrode has been developed for the amperometric detection of ultratrace amount of toxic Cr(VI). The nano-sized Au particles have been grown on a conducting substrate modified with sol-gel-derived thiol functionalized silicate network and used for the electroanalysis of Cr(VI). The nanostructured interface show well-defined voltammetric peak for the reduction of Cr(VI) at approximately 0.4 V. The voltammetric behavior of Cr(VI) strongly depends on the coverage of nanoparticle on the electrode surface. Constant potential amperometry has been used for the detection of Cr(VI) at well below the guideline value set by World Health Organization (WHO). This electrode is highly sensitive (30+/-0.2 nA/ppb) and the detection limit (S/N=9) was 0.1 ppb. Cr(III) and coexisting other metal ions and surface active agent present in water do not interfere with the amperometric measurement of Cr(VI). This nanostructured electrode is highly stable and it can be used for continuous measurement of Cr(VI) without using any pretreatment or activation procedures. The accuracy of the measurement has been validated by measuring the concentration of Cr(VI) in the certified reference material (CRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号