首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present a new continuous-time solver for quantum impurity models such as those relevant to dynamical mean field theory. It is based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter. Comparisons with Monte Carlo and exact diagonalization calculations confirm the accuracy of the new approach, which allows very efficient simulations even at low temperatures and for strong interactions. As examples of the power of the method we present results for the temperature dependence of the kinetic energy and the free energy, enabling an accurate location of the temperature-driven metal-insulator transition.  相似文献   

3.
4.
In many cell types, asynchronous or synchronous oscillations in the concentration of intracellular free calcium occur in adjacent cells that are coupled by gap junctions. Such oscillations are believed to underlie oscillatory intercellular calcium waves in some cell types, and thus it is important to understand how they occur and are modified by intercellular coupling. Using a previous model of intracellular calcium oscillations in pancreatic acinar cells, this article explores the effects of coupling two cells with a simple linear diffusion term. Depending on the concentration of a signal molecule, inositol (1,4,5)-trisphosphate, coupling two identical cells by diffusion can give rise to synchronized in-phase oscillations, as well as different-amplitude in-phase oscillations and same-amplitude antiphase oscillations. Coupling two nonidentical cells leads to more complex behaviors such as cascades of period doubling and multiply periodic solutions. This study is a first step towards understanding the role and significance of the diffusion of calcium through gap junctions in the coordination of oscillatory calcium waves in a variety of cell types. (c) 2001 American Institute of Physics.  相似文献   

5.
KADATH is a library that implements spectral methods in a very modular manner. It is designed to solve a wide class of problems that arise in the context of theoretical physics. Several types of coordinates are implemented and additional geometries can be easily encoded. Partial differential equations of various types are discretized by means of spectral methods. The resulting system is solved using a Newton–Raphson iteration. Doing so, KADATH is able to deal with strongly non-linear situations. The algorithms are validated by applying the library to four different problems of contemporary physics, in the fields of gauge field theory and general relativity.  相似文献   

6.
The plasma flow model of resistive interchange modes in a toroidally confined plasma is similar to the well known two-dimensional hydrodynamic Bénard–Rayleigh convection paradigm. A co-dimension two bifurcation analysis of the plasma problem is presented at a marginal point where two different wavelengths become simultaneously unstable. The weakly nonlinear interaction of convection cells is observed, and the hydrodynamic and plasma physics model systems are compared. With increasing magnetic shear, the dynamics of the resistive interchange model deviates significantly from the shearless hydrodynamic Bénard–Rayleigh convection predictions. The analytical results are confirmed by numerical simulations.  相似文献   

7.
Excitons, adiabatically coupled to phonons in a linear chain, are pumped with spatially homogeneous, coherent and monochromatic light. Above a critical pump-power threshold spatially ordered solutions of the equations are found by using bifurcation theory. The stability is studied.  相似文献   

8.
This paper presents a parallel implementation of fractional solvers for the incompressible Navier–Stokes equations using an algebraic approach. Under this framework, predictor–corrector and incremental projection schemes are seen as sub-classes of the same class, making apparent its differences and similarities. An additional advantage of this approach is to set a common basis for a parallelization strategy, which can be extended to other split techniques or to compressible flows.  相似文献   

9.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high-order of accuracy, a multi-dimensional Riemann problem that appears when solving hyperbolic problems.For this purpose, we use a MUSCL-like procedure in a “cell-vertex” finite-volume framework. In the first part of this procedure, we devise a four-state bi-dimensional HLL solver (HLL-2D). This solver is based upon the Riemann problem generated at the centre of gravity of a triangular cell, from surrounding cell-averages. A new three-wave model makes it possible to solve this problem, approximately. A first-order version of the bi-dimensional Riemann solver is then generated for discretizing the full compressible Euler equations.In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third-order accuracy. The resulting over determined system is solved by using a least-square methodology. To enforce monotonicity conditions into the polynomial interpolation, we develop a simplified central WENO (CWENO) procedure.Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model.  相似文献   

10.
We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe’s Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe’s method, while maintaining Roe’s low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions.As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouët and Masella [T. Gallouët, J.-M. Masella, Un schéma de Godunov approché C.R. Acad. Sci. Paris, Série I, 323 (1996) 77–84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.  相似文献   

11.
A theoretical investigation is conducted on the dynamic and energetic characteristics of a multi-stable bimorph cantilever energy harvester that uses magnetic attraction effect. The multi-stable energy harvester under study is composed of a bimorph cantilever beam with soft magnetic tip and two externally fixed permanent magnets that are arranged in series. With this configuration, the magnetic force and the moment that are exerted on the cantilever tip tend to be highly dependent on the magnetic field induced by the external magnets. Such an energy harvester can possess multi-stable potential functions, ranging from mono-stable to penta-stable. The mechanism that governs the formation of this multi-stability is thoroughly identified and examined thorough a bifurcation analysis performed on the system?s equilibrium solutions. From this analysis, it is found that the transitions between these multi-stable states occur through very complicated bifurcation scenarios that include degenerate pitchfork bifurcations and mergers of pitchfork bifurcations or saddle-node bifurcations. Bifurcation set diagram is obtained, which is composed of five separate parametric regions, from mono- to penta-stability. The resulting stability map satisfactorily describes the multi-stable characteristics of the present energy harvester. In addition, the dynamic and energetic characteristics of the present multi-stable energy harvester are more thoroughly examined using its potential energy diagrams and a series of numerical simulations, and the obtained results are compared with those for the equivalent bi-stable cases.  相似文献   

12.
A variational approach for the semivectorial modal analysis of dielectric waveguides with arbitrary piecewise constant rectangular 2D cross-sections is developed. It is based on a representation of a mode profile as a superposition of modes of constituting slab waveguides times some unknown continuous coefficient functions, defined on the entire coordinate axis. The propagation constant and the lateral functions are found from a variational principle. It appears that this method with one or two modes in the expansion preserves the computational efficiency of the “standard” effective index method while providing more accurate estimates for propagation constants, and well-defined continuous approximations for mode profiles. By including a larger number of suitable trial fields, the present approach can also serve as a technique for rigorous semivectorial mode analysis.  相似文献   

13.
We study analytically and numerically the noise-induced transition between an absorbing and an oscillatory state in a Duffing oscillator subject to multiplicative, Gaussian white noise. We show in a non-perturbative manner that a stochastic bifurcation occurs when the Lyapunov exponent of the linearised system becomes positive. We deduce from a simple formula for the Lyapunov exponent the phase diagram of the stochastic Duffing oscillator. The behaviour of physical observables, such as the oscillators mean energy, is studied both close to and far from the bifurcation.Received: 8 August 2003, Published online: 19 November 2003PACS: 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems  相似文献   

14.
We study the response of a MEMS resonator, driven in an in-plane length-extensional mode of excitation. It is observed that the amplitude of the resulting vibration has an upper bound, i.e., the response shows saturation. We present a model for this phenomenon, incorporating interaction with a bending mode. We show that this model accurately describes the observed phenomena. The in-plane (“trivial”) mode is shown to be stable up to a critical value of the amplitude of the excitation. At this value, a new “bending” branch of solutions bifurcates. For appropriate values of the parameters, a subsequent Hopf bifurcation causes a beating phenomenon, in accordance with experimental observations.  相似文献   

15.
We present special numerical simulation methods for non-isothermal incompressible viscous fluids which are based on LBB-stable FEM discretization techniques together with monolithic multigrid solvers. For time discretization, we apply the fully implicit Crank–Nicolson scheme of 2nd order accuracy while we utilize the high order Q2P1Q2P1 finite element pair for discretization in space which can be applied on general meshes together with local grid refinement strategies including hanging nodes. To treat the nonlinearities in each time step as well as for direct steady approaches, the resulting discrete systems are solved via a Newton method based on divided differences to calculate explicitly the Jacobian matrices. In each nonlinear step, the coupled linear subproblems are solved simultaneously for all quantities by means of a monolithic multigrid method with local multilevel pressure Schur complement smoothers of Vanka type. For validation and evaluation of the presented methodology, we perform the MIT benchmark 2001 [M.A. Christon, P.M. Gresho, S.B. Sutton, Computational predictability of natural convection flows in enclosures, in: First MIT Conference on Computational Fluid and Solid Mechanics, vol. 40, Elsevier, 2001, pp. 1465–1468] of natural convection flow in enclosures to compare our results with respect to accuracy and efficiency. Additionally, we simulate problems with temperature and shear dependent viscosity and analyze the effect of an additional dissipation term inside the energy equation. Moreover, we discuss how these FEM-multigrid techniques can be extended to monolithic approaches for viscoelastic flow problems.  相似文献   

16.
A benchmark solution is of great importance in validating algorithms and codes for magnetohydrodynamic(MHD) flows.Hunt and Shercliff’s solutions are usually employed as benchmarks for MHD flows in a duct with insulated walls or with thin conductive walls,in which wall effects on MHD are represented by the wall conductance ratio.With wall thickness resolved,it is stressed that the solution of Sloan and Smith’s and the solution of Butler’s can be used to check the error of the thin wall approximation condition used for Hunt’s solutions.It is noted that Tao and Ni’s solutions can be used as a benchmark for MHD flows in a duct with wall symmetrical or unsymmetrical,thick or thin.When the walls are symmetrical,Tao and Ni’s solutions are reduced to Sloan and Smith’s solution and Butler’s solution,respectively.  相似文献   

17.
Describing turbulence and microinstabilities in fusion devices is often modelled with the gyrokinetic equation. During the time evolution of the distribution function a field equation for the electrostatic potential needs to be solved. In the case of adiabatic electrons it contains a flux-surface-average term resulting in an integro-differential equation. Its numerical solution is time and memory intensive for three-dimensional configurations. Here a new algorithm is presented which only requires the numerical inversion of a simpler differential operator and a subsequent addition of a correction term. This new procedure is as fast as solving the equation without the surface average.  相似文献   

18.
We model a nanoMOSFET by a mesoscopic, time-dependent, coupled quantum-classical system based on a sub-band decomposition and a simple scattering operator. We first compute the sub-band decomposition and electrostatic force field described by a Schrödinger–Poisson coupled system solved by a Newton–Raphson iteration using the eigenvalue/eigenfunction decomposition. The transport in the classical direction for each sub-band modeled by semiclassical Boltzmann-type equations is solved by conservative semi-lagrangian characteristic-based methods. Numerical results are shown for both the thermodynamical equilibrium and time-dependent simulations in typical nowadays nanoMOSFETs.  相似文献   

19.
We present a low-Mach number fix for Roe’s approximate Riemann solver (LMRoe). As the Mach number Ma tends to zero, solutions to the Euler equations converge to solutions of the incompressible equations. Yet, standard upwind schemes do not reproduce this convergence: the artificial viscosity grows like 1/Ma, leading to a loss of accuracy as Ma → 0. With a discrete asymptotic analysis of the Roe scheme we identify the responsible term: the jump in the normal velocity component ΔU of the Riemann problem. The remedy consists of reducing this term by one order of magnitude in terms of the Mach number. This is achieved by simply multiplying ΔU with the local Mach number. With an asymptotic analysis it is shown that all discrepancies between continuous and discrete asymptotics disappear, while, at the same time, checkerboard modes are suppressed. Low Mach number test cases show, first, that the accuracy of LMRoe is independent of the Mach number, second, that the solution converges to the incompressible limit for Ma → 0 on a fixed mesh and, finally, that the new scheme does not produce pressure checkerboard modes. High speed test cases demonstrate the fall back of the new scheme to the classical Roe scheme at moderate and high Mach numbers.  相似文献   

20.
F.H. Ling 《Physics letters. A》1985,110(3):116-120
A shooting type iterative method for determining bifurcation curves of mappings is developed in this paper. By using this method we are able to calculate bifurcation curves for orbits of periods ≤ 5 of a Hénon-like map in all details. We find an interesting phenomenon that two or more stable periodic orbits of the same or different periods may coexist for some combinations of parameter values. Two stable p5 orbits and their attracting regions are shown for (μ, b) = (1.536, 0.153).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号