首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.  相似文献   

2.
Montmorillonite clay (N) based nanocomposites were prepared using three different grades of acrylonitrile butadiene rubber (NBR) (19%, 34%, and 50% acrylonitrile contents), styrene butadiene rubber (SBR), and polybutadiene rubber (BR). Rheological study was carried out on these nanocomposites at three different temperatures (110 °C, 120 °C, and 130 °C) over a range of shear rates for comparison. The results showed that the shear viscosity decreased with increasing shear rate and incorporation of the unmodified (N) and the modified (OC) fillers up to a certain loading, when the results were compared with the gum rubber. This effect became more prominent with increasing polarity of the rubber. The die swell, on the other hand, decreased with loading of N and OC. With increasing filler volume fraction, the die swell further decreased. Decrease of viscosity with concomitant decrease of die swell is unique in such systems. Consecutive runs of the same sample over different shear rates increased the viscosity. The results were explained with the help of X‐Ray Diffraction (XRD) data and Transmission Electron Microscopy (TEM).© 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1854–1864, 2005  相似文献   

3.
Cellulose nanofibres (CNF) with diameter 10–60 nm were isolated from raw banana fibres by steam explosion process. These CNF were used as reinforcing elements in natural rubber (NR) latex along with cross linking agents to prepare nanocomposite films. The effect of CNF loading on the mechanical and dynamic mechanical (DMA) properties of NR/CNF nanocomposite was studied. The morphological, crystallographic and spectroscopic changes were also analyzed. Significant improvement of Young’s modulus and tensile strength was observed as a result of addition of CNF to the rubber matrix especially at higher CNF loading. DMA showed a change in the storage modulus of the rubber matrix upon addition of CNF which proves the reinforcing effect of CNF in the NR latex. A mechanism is suggested for the introduction of the Zn–cellulose complex and its three dimensional network as a result of the reaction between the cellulose and the Zinc metal which is originated during the composite formation.  相似文献   

4.
This study investigated the effects of natural rubber(NR)and an organic peroxide on the rheological properties,mechanical properties,morphology,and bubble stability during film blowing of poly(lactic acid)(PLA).The NR and peroxide contents were varied from 0 wt%to 25 wt%and 0 wt%to 0.5 wt%,respectively.The results confirmed that the presence of well-dispersed NR could significantly improve the toughness,elongation at break,and processability of PLA films,where the optimal amount of NR was 15 wt%.For the reactive blending with peroxide,a suitable peroxide content for good film toughness and clarity was 0.03 wt%,while the higher content of 0.1 wt%could provide slightly higher processability.These contents are considered much lower than that in the PLA system(without NR),which required up to 0.5 wt%peroxide.The rheological studies indicated that the melt strength,the storage modulus(G’)and complex viscosity(η*)at low frequency could be correlated with good film blowing processability of the PLA/NR films at low gel contents.These parameters failed to correlate in the films having high gel contents as the deformation rate experienced by each test was different leading to the different levels of response to the type and amount of gels.  相似文献   

5.
A constant shear‐rate extrusion rheometer with an electro‐magnetized capillary die was utilized to investigate die swell behavior and flow properties of a polystyrene melt as the application of an electro‐magnetic field to the capillary die was relatively novel in polymer processing. The test conditions such as magnetic flux density, barrel diameter, extrusion rate and die temperature were studied. The results suggest that the maximum swelling of the polystyrene melt with application of the electro‐magnetic field could be enhanced up to 2.6 times (260%) whereas that without the electro‐magnetic field was 1.9 times (190%). The barrel diameter of 30 mm was found to be a critical value in the case of the die swell ratio and flow properties of the polystyrene melt were significantly affected by the magnetic flux density. This involved the number and angle of magnetic flux lines around the barrel part. Under the electro‐magnetic field, there were two mechanical forces influencing the die swell ratio and the flow properties; magnetic torque and shearing force. The die swell at wall shear rates less than 11.2 sec?1 was caused by the magnetic torque, whereas at higher wall shear rates it was dependent on the shearing force. For a given magnetic flux density, the maximum increase in the die swell ratio as a result of the magnetic torque was calculated to be approximately 20%. Increasing the die temperature from 180 to 200°C reduced the overall die swell ratio and suppressed the effect of the magnetic flux density. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The extrudate swell ratios of polypropylene (PP) composite melts filled with graphene nano-platelets (GNPs) were measured using a capillary rheometer within a temperature range of 180–230 °C and apparent shear rate varying from 100 to 4000 s−1 in order to identify the effects of the filler content and test conditions on the melt die-swell behavior. It was found that the values of the extrudate swell ratio of the composites increased with increasing apparent shear rate, with the correlation between them obeying a power law relationship, while the values of the extrudate swell ratio decreased almost linearly with rise in temperature. The values of the melt extrudate swell ratio increased approximately linearly with increasing shear stress, and decreased roughly linearly with an increase of the GNP weight fraction. In addition, the extrudate swell mechanisms are discussed from the observation of the fracture surface of the extrudate using scanning electronic microscopy. This study provides a basis for further development of graphene reinforced polymer composites with desirable mechanical performance and good damage resistance.  相似文献   

7.
By the interaction of a water–glycol solution of poly(ethylene glycol) (PEG) with calcium chloride dihydrate, a gel was produced. It was determined that, below a certain shear rate, this gel is a Newtonian fluid; however, above a certain shear rate, which depends on the gel viscosity, the properties of this gel are anomalous: the gel flow instantaneously completely stops. The viscosity of the gels was found to exponentially increase with increasing concentration of the cross-linking metal at constant PEG concentration. The density of the gels linearly increases with increasing concentration of the cross-linking metal at constant PEG concentration.  相似文献   

8.
Complexation, between a ditopic ligand, consisting of a 2,6-bis-(1′-methylbenzimidazolyl)-4-oxypyridine moiety (O-Mebip) attached to either end of a penta(ethylene glycol) core, with transition metal and lanthanide ions, results in the formation of metallosupramolecular polymers, soluble in acetonitrile at high temperatures. Cooling the hot sol to room temperature causes phase separation and crystallization, and produces mechanically-strong gels, which exhibit a highly thixotropic behavior. Optical microscopy indicates that the gel morphology consists of spherulitic particles, which are easily broken by mechanical shear. Reproducible gel properties are produced when the gel is formed by cooling in a sonication bath, which produces a finely-divided globular morphology, and increases the modulus of the gels. Wide angle X-ray diffraction study shows that the crystalline structures of the gels are strongly dependent on the thermal history of gel formation and the nature of the metal ion. The gel properties are a result of the interactions between the colloidal particles produced by the phase separation and crystallization process. These interactions, which may reflect electrostatic forces and possibly metal-ligand binding, in addition to the usual van der Waals interactions, give rise to the formation of a network structure. The disruption of this network by mechanical shear, and its facile reformation when shear is removed, are the origin of the pronounced thixotropic behavior of the gels.  相似文献   

9.
An electro‐magnetized capillary die via a parallel co‐extrusion technique was used to study the changes in the overall and radial extrudate swell ratio of polystyrene (PS) melt flowing in a single screw extruder. The effects of magnetic flux density, wall shear rate (screw rotating speed) and die temperature were studied. The results suggested that, in the case of non‐magnetic die the average overall swell ratio of the melt ranged from 1.25 to 1.55. The swelling ratio increased with increasing wall shear rate up to 8.5 sec?1 and then decreased at 17.1 sec?1. Increasing die temperature caused a reduction of extrudate swell ratio. The changes in extrudate swell ratio can be explained using the simultaneously measured velocity profiles during the flow in the die, and the swell ratio decreased with increasing radial position. Melt contraction of the melt layer near the die wall was observed. The die temperature was found to have no effect on the change of the radial extrudate swell profiles. When an electro‐magnetized die was used, the average overall swell ratio was found to increase with increasing magnetic flux density to a maximum value and then decreased at higher flux densities. The magnetic flux density of the maximum swell was changed by the wall shear rate. It was associated with a balance of elastic and magnetic energies during the flow. The magnetic energy was thought to have a pronounced effect on the swell ratio at low shear rate and low die temperature. Considering the radial position, the highest swell ratio occurred at the duct center, in the range 2.4–3.3. There was no extrudate contraction of the melt layer near the die wall. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A systematic investigation has been performed to relate the effect of glycerol composition to the rheological properties of aqueous suspensions of hydrophilic fumed silica at pH far from the isoelectric point. Steady state/dynamic rheology and electrophoresis measurements are compared to correlate the stability of the suspension with particle-particle and particle-solvent interactions. Although the extent of electrostatic stability is reduced by addition of glycerol, the rheological properties show a transition from a highly flocculated gel to stable dispersions containing no microstructures. This is attributed to a high degree of hydrogen-bonding between glycerol and the Aerosil surface silanol groups. Small dissociation of NaCl and particles reduce the effect of ion exchange and particle bridging mechanisms when the suspensions destabilise in the presence of glycerol. The high viscosity of glycerol is important with respect to the formation of a thick solvation layer around the particles. These parameters give rise to short-range, non-DLVO repulsive solvation forces, which stabilise the dispersion. At intermediate concentrations of glycerol (30–60 wt%) the apparent viscosity increase abruptly and irreversibly as both the extent and time of shearing are increased. The shear rate for the onset of the shear thickening is found to be retarded by decreasing the particle and salt concentration as well as by increasing the glycerol concentration. It is postulated that at intermediate glycerol concentration, where the height of the energy barrier is small, mechanical forces can activate the particles to overcome the energy barrier to enter the region where attractive forces dominate. Here, domination of the hydrodynamic forces to the colloidal forces under the shear results in formation of irreversible gels which does not relax to its initial condition.  相似文献   

11.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Glucose at various concentrations was incorporated into sugar free purified natural rubber (PNR) latex to model the effect of carbohydrate on the basic characteristics and physical properties of natural rubber (NR). PNR samples treated with various concentrations of glucose were characterized for the basic properties of unvulcanized NR, i.e., gel content, molecular weight distribution and Mooney viscosity to evaluate the effect of sugar on these parameters. In addition, the effect of glucose on the physical properties of vulcanizates derived using sulfur and peroxide vulcanization was investigated. Glucose was shown to affect the viscosity of unvulcanized NR and the discoloration of vulcanized NR. Moreover, glucose was found to have a strong effect on crosslink density, as well as tensile and dynamic properties of sulfur vulcanizates, while those properties of peroxide vulcanizates was not much affected by glucose.  相似文献   

13.
The recovery of plastic waste but also its applicability in product development may be an incentive to industry, since the use of such plastics represents a cheaper source of raw material. The aim of the present paper is to study the feasibility of recycling polyolefins as additives to improve the rheological properties of lithium 12-hydroxystearate lubricating greases. The effects that both soap and recycled low-density polyethylene (LDPE) concentration exert on the rheology of lithium lubricating greases and its relationship with grease microstructure are discussed in this work. In this way, different lubricating grease formulations were manufactured by modifying the concentration of lithium 12-hydroxystearate and content of recycled LDPE, according to a RSM statistical design. These lubricating greases were rheologically characterized through small-amplitude oscillatory shear (SAOS) and viscous flow measurements. In addition to these, scanning electronic microscopy (SEM) observations and mechanical stability tests were also carried out. Recycled LDPE was found to be an effective additive to modify grease rheology, acting as filler in the soap entangled microstructure. The values of both apparent viscosity and viscoelastic functions in the linear viscoelastic region increase with soap and recycled polymer concentrations. However, the addition of recycled LDPE distort the microstructural network of these greases resulting greases with less relative elastic characteristics and poorer mechanical properties as LDPE content increases.  相似文献   

14.
This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch–gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels’ syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G′ than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts.  相似文献   

15.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The rheological behavior of nanocomposites based on multiwalled carbon nanotube (MWNT) with three commercial grades of ethylene methyl acrylate (EMA) copolymers containing 9, 24, and 30 wt% methyl acrylate (MA) was investigated under dynamic and steady shear flow (in a capillary) conditions. Storage modulus (in dynamic shear) value increases especially at higher frequency levels due to increased polymer‐filler interactions. Both the unfilled and filled composites exhibit rheological behavior of non‐Newtonian fluids. In both steady shear and capillary flow, the nanocomposites register a slightly higher viscosity than neat EMAs, with dependence on the MWNTs content. All systems with various loading of MWNTs represent an increase in elastic response with increasing frequency. The die swell decreases with the MWNTs loading. Dynamic and steady shear rheological properties register a good correlation in regard to the viscous versus elastic response of such systems inline with the Cox–Merz concept. Increased MA content leads to inferior dispersion of MWNTs in EMA matrix. Morphological studies exhibit that MWNTs become more aligned along longitudinal direction after extrusion leading to improved dispersion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of a processing agent (Dynamar) on the viscosity and surface properties of high-density polyethylene (HDPE) has been studied. A capillary rheometer was used to measure the viscosity of HDPE compounds containing various concentrations of Dynamar as a function of time at constant apparent shear rates. The shear rates used are 250 and 500 sec−1. The addition of a small amount of Dynamar leads to a marked reduction in viscosity. The viscosity decreases dramatically initially, then levels off to an equilibrium. The rate of the viscosity reduction and the equilibrium viscosity value depend upon the Dynamar concentration and the shear rate. This phenomenon can be explained by the migration of Dynamar from the bulk to the interface of HDPE melt and die wall, resulting in the formation of a lubrication layer. X-ray photoelectron spectroscopy and scanning secondary ion mass spectrometry analyses of the extrudates from a slit die reveal a low concentration of Dynamar at the surface. Adhesive failure at the Dynamar and HPDE interface is attributed to a reduction in viscosity. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Guar gum (GG) fracturing fluids were studied by incorporating cellulose nanofibrils (CNFs) in anhydrous borax crosslinked guar gum gels. To fully understand the impact of CNF on the proppant suspension capability of developed fracturing fluids, their shear rate-dependent viscosity and viscoelasticity were investigated. The shear rate dependencies of fluids was fitted to the Carreau model. The zero shear rate viscosity and elasticity of fracturing fluids increased significantly by incorporating CNF in guar gum gels. On the other hand, the viscosity at high shear rates (>100 s?1) decreased as desired. The proppant settling velocities through fracturing fluids were evaluated by modeling the terminal falling velocity of proppants moving through a Carreau model fluid. The experimental results of the rheological behavior and the modeling results of the proppant settling rate indicated that the fracturing fluids containing CNF had better suspension capabilities. In addition, the lower viscosities of CNF formulated GG gels at higher shear rates will make them more pumpable.  相似文献   

19.
Recently, gel content has been considered as a standard property for evaluating commercial grade natural rubber (NR). In this study, NR containing various amounts of gel was prepared by accelerated storage hardening as a model to clarify the influence of gel content on the physical properties of both unfilled and carbon black filled vulcanizates. Furthermore, the NR samples were investigated to determine the effect of gel fraction on Mooney viscosity and the structure of the gel after mastication. The results revealed that Mooney viscosity was related to the percentage of gel fraction that has been proven to be the result of interactions between proteins and phospholipids at chain ends. After mastication, although the gel fraction of NR can be decomposed to ∼0% w/w, the interactions of proteins and phospholipids at the chain ends still existed, corresponding to the gel content of the raw rubber. In the case of unfilled vulcanizates, the gel content showed no effect on cure characteristics, crosslink density and ultimate tensile strength, whereas the upturn of stress occurred at a smaller strain when the gel content increased. However, in the case of carbon black filled vulcanizates, the gel content played a dominant role in the carbon black dispersion, which was poorer when gel content increased, contributing to a decrease of crosslink density and ultimate tensile strength.  相似文献   

20.
Graft copolymer of natural rubber and poly(dimethyl(methacryloyloxymethyl)phosphonate) (NR‐g‐PDMMMP) was prepared in latex medium via photopolymerization. It was then used to promote the blend compatibility of dynamically cured 40/60 natural rubber (NR)/ethylene vinylacetate copolymer (EVA) blends using various loading levels at 1, 3, 5, 7, 9, 12, and 15 wt%. It was found that the increasing loading levels of NR‐g‐PDMMMP in the blends caused the increasing elastic modulus and complex viscosity until reaching the maximum values at a loading level of 9 wt%. The properties thereafter decreased with the increasing loading levels of NR‐g‐PDMMMP higher than 9 wt%. The smallest vulcanized rubber particles dispersed in the EVA matrix with the lowest tan δ value was also observed at a loading level of 9 wt%. Furthermore, the highest tensile strength and elongation at break (i.e., 17.06 MPa and 660%) as well as the lowest tension set value (i.e., 27%) were also observed in the blend using this loading level of the compatibilizer. Addition of NR‐g‐PDMMMP in the dynamically cured NR/EVA blends also improved the thermal stability of the blend. That is, the decomposition temperature increased with the addition of the graft copolymer. However, the addition of NR‐g‐PDMMMP in the blends caused the decreasing degree of crystallinity of the EVA phase in the blend. However, the strength properties of the blend are still high because of the compatibilizing effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号