首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A compact system for methane sensing based on the Quartz-Enhanced Photoacoustic Spectroscopy technique has been developed. This development has been taken through two versions which were based respectively on a Fabry Perot quantum wells diode laser emitting at 2.3 μm, and on a quantum wells distributed feedback diode laser emitting at 3.26 μm. These lasers emit near room temperature in the continuous wave regime. A spectrophone consisting of a quartz tuning fork and one steel microresonator was used. Second derivative wavelength modulation detection was used to perform low methane concentration measurements. The sensitivity and the linearity of the QEPAS sensor were studied. A normalized noise equivalent absorption coefficient of 7.26 × 10−6 cm−1 W/Hz1/2 was achieved. This corresponds to a detection limit of 15 ppmv for 12 s acquisition time.  相似文献   

2.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

3.
The electrical characteristics of photodiode structures on the base of InAS/InAsSbP heterojunctions, that have a high room temperature differential resistance and operate in the mid-infrared region over the wavelength range 1.6–3.5 μm are reported. At the difference frequency, CV measurements are showed that at small biases and temperatures which are higher than 160 K, the measured capacity is increase with decreasing frequency. It is possible to explain by presence the deep recombination centers in space charge region of the investigated structures. Have been studied the avalanche multiplication of the photocurrent and the temperature dependence of the monochromatic power–voltage sensitivity in the temperature range 77–300 K.  相似文献   

4.
5.
A unified and comprehensive study on the small-signal intensity and frequency modulation characteristics of a fiber Bragg grating Fabry–Perot (FBG–FP) laser are numerically investigated. The effect of injection current, temperature, external optical feedback (OFB), nonlinear gain compression factor, fiber grating (FG) parameters and spontaneous emission factor on modulation response characteristics are presented. The rate equations of the laser model are presented in the form that the effect of temperature (T) and external optical feedback (OFB) are included. The temperature dependence (TD) of laser response is calculated according to the TD of laser cavity parameters instead of directly using the well-known Parkove equation. It is shown that the optimum external fiber length (Lext) is 3.1 cm and the optimum range of working temperature for FGFP laser is within ±2 °C from the FBG reference temperature (To). Also, the antireflection (AR) coating reflectivity and the linewidth enhancement factor have no significant effect on the modulation spectra. It is also show that modulation response is extremely sensitive to the OFB level, high injection current and gain compression factor. The study indicates clearly that good dynamic characteristic can be obtained by system parameters optimization.  相似文献   

6.
7.
Results of modeled photodetector characteristics in (CdS/ZnSe)/BeTe multi-well diode with p–i–n polarity are reported. The dark current density (JV) characteristics, the temperature dependence of zero-bias resistance area product (R0A), the dynamic resistance as well as bias dependent dynamic resistance (Rd) and have been analyzed to investigate the mechanisms limiting the electrical performance of the modeled photodetectors. The quantum efficiency, the responsivity and the detectivity have been also studied as function of the operating wavelength. The suitability of the modeled photodetector is demonstrated by its feasibility of achieving good device performance near room temperature operating at 1.55 μm wavelength required for photodetection in optical communication. Quantum efficiency of ∼95%, responsivity ∼0.6 A/W and D*  5.7 × 1010 cm Hz1/2/W have been achieved at 300 K in X BeTe conduction band minimum.  相似文献   

8.
Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole–Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.  相似文献   

9.
Experimental results of a study on the wavelength dependence and the dynamic range of the quadratic response of commercial grade light emitting diodes (LEDs) are reported over a broad spectral range of 680 nm to 1080 nm using ~ 100 fs duration laser pulses from cw mode locked laser oscillator. A large dynamic range of the quadratic response has been demonstrated in a reverse biased LED. The observed dynamic range compares well with that obtained using a biased photomultiplier tube with large internal gain.  相似文献   

10.
Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.  相似文献   

11.
A high performance multiplexed fiber-optic sensor consisted of diaphragm-based extrinsic Fabry–Perot interferometer (DEFPI) and fiber Bragg grating (FBG) is proposed. The novel structure DEFPI fabricated with laser heating fusion technique possesses high sensitivity with 5.35 nm/kPa (36.89 nm/psi) and exhibits ultra-low temperature dependence with 0.015 nm/°C. But the ultra-low temperature dependence still results in small pressure measurement error of the DEFPI (0.0028 kPa/°C). The designed stainless epoxy-free packaging structure guarantees the FBG to be only sensitive to temperature. The temperature information is created to calibrate the DEFPI's pressure measurement error induced by the temperature dependence, realizing effectively temperature self-compensation of the multiplexed sensor. The sensitivity of the FBG is 10.5 pm/°C. In addition, the multiplexed sensor is also very easy to realize the pressure and the temperature high-precise high-sensitive simultaneous measurement at single point in many harsh environmental areas.  相似文献   

12.
We report a tunable, narrow linewidth and high beam quality continuous-wave (CW) yellow laser system at 589 nm. The system is an all solid-state design employing single-pass sum–frequency generation in a KTP crystal by mixing the 1064 nm with 1319 nm lines of two side-pumped Nd:YAG enforcing unidirectional ring lasers. With this method, a CW yellow laser at 589.159 nm with an output power of 0.8 W, a linewidth less than 1.5 GHz and a beam quality M2 = 1.29 is obtained. The wavelength of the laser also can be precisely tuned from 589.112 to 589.181 nm in step-length of about 0.22 pm.  相似文献   

13.
We investigated the emission wavelength dependence of the lasing polarization in a (1 1 0)-oriented vertical-cavity surface-emitting laser (VCSEL) with GaAs/AlGaAs quantum wells under optical spin injection at room temperature. Lasing was observed in the one circularly polarized mode over a wide wavelength range from 838 to 857 nm, in which a degree of circular polarization higher than 0.8 was maintained. The optical gain spectrum that contributed to the circularly polarized lasing is discussed based on the optical selection rules and the measured polarization-resolved photoluminescence spectra of the active layers.  相似文献   

14.
A detailed study on the pressure dependent sensitivity of a wavelength modulated diode laser based photoacoustic (PA) water vapor detection system is presented. It is shown that the pressure dependence of sensitivity is primarily determined by the pressure dependence of the microphone’s sensitivity and the quality factor of the excited acoustic resonance of the PA cell. Effort was made to improve the system’s sensitivity for the whole pressure range (from 200 mbar to 1000 mbar) of operation typical in atmospheric research, while maintaining the inherent fast response time of the PA system. For this purpose active control of modulation based on the continuous adjustment of the unmodulated and modulated parts of the laser current in accordance with the actual gas pressure was introduced, with which a minimum detectable water vapor concentration (3σ) of 300 ppb at 200 mbar and 188 ppb at 1000 mbar was achieved. The system’s sensitivity improves slightly at the lower end of the pressure range and increases by a factor of more than two at the higher end, when compared with that of our PA system currently on board of a commercial aircraft within the framework of an atmospheric research project (CARIBIC—Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). Test measurements proved the feasibility of the implementation of the developed modulation method within the framework of the CARIBIC project.  相似文献   

15.
We fabricated a heavily Bi-doped (xBi  2 × 1019 cm−3) PbTe p–n homojunction diode that detects mid-infrared wavelengths by the temperature difference method (TDM) under controlled vapor pressure (CVP) liquid phase epitaxy (LPE). The photocurrent density produced by the heavily Bi-doped diode sample is approximately 20 times and 3 times greater than that produced by an undoped and heavily In-doped sample, respectively. By varying the ambient temperature from 15 K to 225 K, the detectable wavelength is tunable from 6.18 μm to 4.20 μm. The peak shift of the detectable wavelength is shorter in the heavily Bi-doped sample than in the undoped sample, consistent with our previously proposed model, in which Bi–Bi nearest donor–acceptor pairs are formed in the heavily Bi-doped PbTe liquid phase epitaxial layer. Current–voltage (IV) measurements of the heavily Bi-doped diode sample under infrared exposure at 77 K indicated a likely leak in the dark current, arising from the deeper levels. From the dark IV measurements, the activation energy of the deep level was estimated as 0.067 eV, close to the energy of the deep Tl-doped PbTe acceptor layer. We conclude that the deep level originates from the Tl-doped p-type epitaxial layer.  相似文献   

16.
A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.  相似文献   

17.
The spectral interference of polarization modes in a highly birefringent (HB) fiber to measure temperature is analyzed theoretically and experimentally. A tandem configuration of a birefringent delay line and a sensing HB fiber is considered and the spectral interferograms are modelled for the known birefringence dispersion of the HB fiber under test. As the delay line, a birefringent quartz crystal of a suitable thickness is employed to resolve a channeled spectrum. The channeled spectra are recorded for different temperatures and the polarimetric sensitivity to temperature, determined in the spectral range from 500 to 850 nm, is decreasing with wavelength. It is demonstrated that the temperature sensing is possible using the wavelength interrogation, i.e., the position of a given interference maximum is temperature dependent. The temperature sensitivity of the HB fiber under test is −0.25 nm/K and the resolution is better than 0.5 K.  相似文献   

18.
A dual-wavelength fiber laser with a narrow-linewidth, based on a P-F fiber filter has been proposed. Polarization-maintaining fiber Bragg grating (PM-FBG) and a F-P fiber filter are introduced based on the traditional fiber laser. PM-FBG is used as the wavelength selection device. The fiber F-P filter consists of two optical couplers and a section of un-pumped erbium-doped fiber (EDF). Due to the delay of cavity and the loss generated by the EDF, the filter has comb spectral response. The incorporation of the fiber F-P filter leads to the suppression of undesirable modes. At the room temperature, under 980 nm LD pumped, the maximum output of the two wavelengths is respectively ?2.259 dBm and 0.568 dBm, with the 3-dB bandwidth separately 0.1 nm and 0.14 nm, realizing the narrow linewidth and dual-wavelength output.  相似文献   

19.
The influence of temperature on optical measurements has been studied for determining fat and protein contents in complex food systems. A model system consisting of mixtures of fat, protein, water and emulsion was developed to create an imitation of complex food systems. The changes in optical properties of the system from 25 °C to 40 °C were measured in the wavelength from 1100 nm to 1670 nm. Irregular changes as a whole were founded and therefore a statistical method was needed to correct the temperature effect. A method called global robust temperature calibration model is proposed and the correction effect was validated. The results indicated that it can significantly reduce the temperature effect on optical measurement.  相似文献   

20.
A thermal radiative inverse method was used to determine the high-temperature spectral properties of an ultraviolet fused silica from transmittance data for wavelengths from 0.8 to 5 µm. A developed FTIR system used to measure apparent transmittances of the fused silica sample has been designed and built. In order to reduce the system error caused by detector emission and stray radiation, a measurement strategy at high temperatures was proposed. For deriving spectral transport properties from experimental transmittances, the parameter identification principle was described. The results show that spectral properties are both wavelength dependent and temperature dependent. Spectral refractive indexes rise with increasing temperature and decrease with wavelength. Three absorption peaks of spectral absorptive indices respectively at about 1.4 µm, 2.22 µm and 2.75 µm shift toward the far infrared region and vary differently with increasing temperature. In addition, three absorption bands all become broader for temperatures from 20 °C to 900 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号