首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag/MEH-PPV {poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]} composite films were prepared by the pulse current electrodeposition of Ag nanoparticles followed by spin coating of MEH-PPV and their enhanced electrochromic coloration was investigated. A relatively uniform Ag nanoparticle array was obtained by the electrodeposition and distinct plasmon absorption bands of Ag nanoparticles were observed. The absorption maximum of Ag/MEH-PPV was much higher than that of MEH-PPV, indicating that the Ag nanoparticles induced an enhanced absorption. In addition, the electrochromic absorption was 1.6 times higher at 500 nm wavelength, with a clearly different coloration compared to MEH-PPV.  相似文献   

2.
In the present research, novel hybrid molecularly imprinted polymer (HMIP) membranes were synthesized for selective adsorption and separation of phenol toxic molecules from aqueous solutions. Molecularly imprinted polymer (MIP) nanospheres for targeted phenol were successfully prepared using precipitation polymerization of methacrylic acid, trimethylolpropane trimethacrylate, and ethylene glycol dimethacrylate, followed by integrating into polysulfone matrix to create the HMIP membranes via a phase inversion method. The fabricated materials were characterized from the viewpoints of spectroscopic analysis, structural and surface morphological properties, porosimetry, and batch rebinding assays. The imprinted polymeric nanospheres with mean diameter value ranging from 210 to 250 nm and average pore diameter of 8 nm were obtained according to the morphological and Brunauer–Emmett–Teller analysis, respectively. Scanning electron microscopy pictures demonstrated that the MIP spheres were uniformly distributed on the surface and in the bulk polymer phase of the hybrid membrane. The surface roughness, porosity, and permeate flux of membrane were significantly augmented by addition of the imprinted polymer particles in the dope solution. HMIP‐2 membrane containing 10 wt% of MIP showed the highest binding capacity and an excellent molecular recognition for phenol with respect to the correlative blank membrane. The selective recognition of phenol on the HMIP‐2 membrane was 3.5 times larger than the analogous compound (i.e. catechol). Moreover, the maximum separation factor of phenol was obtained as 2.19 relative to catechol through selective permeation studies, which was also observed for HMIP‐2 membrane. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Thin, long gold/silver nanowires were grown on substrates in thin surfactant solution films. This growth process occurred exclusively in thinning aqueous films as the water evaporated, and elongated surfactant template structures were formed. The nanowire growth depended on the presence of a relatively high concentration of silver ions (typical Ag:Au mole ratio of 1:1). Tuning the pH value to about 5 in the growth solution was crucial for the nanowire growth. Further development of this process may lead to a simple wet chemical technique for the fabrication of relatively uniform arrays of metal nanowires on surfaces.  相似文献   

4.
由于近红外光在太阳光谱中占44%,因此,近红外光驱动的光催化剂的研制具有十分重要的意义.上转换发光材料可将低能量的近红外光子转换为高能光子,这种高能光子可以通过构建荧光共振转移系统将能量转移并活化量子效率较高的半导体材料,对于太阳能的转化利用具有潜在的应用前景.在本文中,通过胶体化学的过程在电纺丝制备的内嵌CdS纳米颗粒以及上转换荧光纳米颗粒(UCNPs)的二氧化硅复合纳米纤维表面外延生长一层二氧化钛层,通过高温煅烧得到二氧化钛复合纳米管.我们通过二氧化硅结构将CdS纳米颗粒与上转换荧光纳米颗粒紧紧束缚在一起,实现较高的荧光共振能量转移.而且,选择β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)作为纳米能量转换器,替代以前研究工作中使用的β-NaYF4:Yb(30%),Tm(0.5%)或者β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4纳米颗粒,来进一步提高近红外光的转换效率.通过透射电子显微镜照片很清楚的观察到制备的TiO2复合纳米管内部内嵌有大量的CdS与上转换纳米颗粒.通过X-射线衍射以及X-射线光电子能谱能仪器对产物的物相以及表面的化学组成进行了细致的表征.结果显示,通过本实验方法已经成功获得了TiO2复合纳米管.用稳态与瞬态荧光仪研究了最终样品的荧光性质.研究结果揭示,与上转换纳米颗粒以及二氧化硅复合纳米纤维相比,复合二氧化钛纳米管可以将上转换荧光纳米颗粒的(UV-Vis)部分荧光完全淬灭了.特别是,铒离子的荧光(650 nm)也被有效淬灭转移,说明本研究采用β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米能量转换器,可以提高近红外光的转换效率,紫外-可见吸收光谱证实,这种二氧化钛纳米管在紫外-可见光区中的吸收光谱与β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米颗粒的荧光光谱具有较大的重叠,使得上转换荧光纳米颗粒与CdS以及二氧化钛组分之间的荧光共振转移的效率大大提高,进而会显著提高光催化的效果.以罗丹明染料作为污染物为模型,我们研究了罗丹明染料在氙灯下或者近红外光光照下的光催化分解实验.研究结果表明,90%的罗丹明染料分子在20 min内就被降解掉,效率高于其它的近红外光催化剂.上转换荧光纳米颗粒的能量转换效率可以得到大幅度提高,本研究工作中制备的光催化剂利用太阳能的效率将会得到极大提高,在未来为能源危机以及环境保护提供一种可供选择的方法与技术.  相似文献   

5.
The formation of stoichiometric interpolymer complexes (IPCs) between the poly(vinyl ether) of ethyleneglycol and the copolymer of acrylic acid–butyl vinyl ether, between copolymers of vinyl ether of ethyleneglycol–butyl vinyl ether, and the copolymer of acrylic acid–vinylbutyl ether is demonstrated by conductimetric, potentiometric, viscometric and spectroturbidimetric methods in aqueous solution. The swelling/deswelling behavior of composite films derived from the IPC has been studied in water, alcohol and water–alcohol mixtures, depending on various factors. The formation of polyelectrolyte complexes (PECs) between the copolymer of acrylic acid–vinyl butyl ether and poly(vinyl ether of monoethanolamine) on a dimeric interface of water–butanol has been studied by the potentiometric method. The kinetics of PEC formation on a dimeric interface was measured and the activation energy of this process was calculated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
A method of preparing MF-4SK membranes with the anisotropic distribution of aniline over the thickness is developed. The processes of aniline polymerization in the matrix of the MF-4SC sulfocationite membrane are investigated via electronic-absorption and IR spectroscopy. The processes of ion transport in the obtained composite membranes are studied via impedance spectroscopy, voltammetry, and potentiometry.  相似文献   

7.
Polyimide/mesoporous silica composite films were prepared by direct mixing of polyamic acid solution and silylated mesoporous silica particles, or by condensation polymerization of dianhydride and diamine with silylated mesoporous silica particles in N,N-dimethylacetamide, followed with thermal imidization. Structure and glass transition temperatures of the composite films were measured with FTIR, SEM, EDX, XPS and DMTA. The results show that the silylated mesoporous silica particles in the composites tend to form the aggregation with a strip shape due to phase separation. The composite films exhibit higher glass transition temperature as comparing with that of pure polyimide. It is found that the composite films present lower infrared emissivity value than the pure polyimide and the magnitude of infrared emissivity value is related to the content of silylated mesoporous silica in the composite films. Inhibiting actions of silylated mesoporous silica on infrared emission of the composite films may be owing to presence of nanometer-scale pores in silylated mesoporous silica.  相似文献   

8.
The purple membrane (PM) of the microorganism Halobacterium salinarium contains a hexagonally packed monolayer of the light-sensitive protein, bacteriorhodopsin (BR). The optical characteristics of gelatin-immobilized PMs depend strongly on the chemical environment of the PMs in the matrix. Here we present photoinduced absorptive and holographic characteristics of gelatin-embedded PMs solubilized with the non-ionic detergent, Triton X-100. The BR/detergent interaction was shown to slow the M-to-initial state transition of the photocycle and to increase the photosensitivity of the BR films. The lifetime of the holographic grating in Triton X-100-treated BR films was 2–3 times greater, when compared to the unmodified sample. Holographic grating growth times in BR films were shown to change depending on the extent of solubilization. The measured holographic sensitivity appeared to maximize in the range of Triton X-100/BR molar ratios from 15:1 to 25:1. The possible advantages of solubilized PM films as they are applied to optoelectronic devices are discussed.  相似文献   

9.
Metal nanoparticles, in general, and gold nanoparticles, in particular, are very attractive because of their size- and shape-dependent properties. Biosynthesis of anisotropic gold nanoparticles using aqueous extract of Madhuca longifolia and their potential as IR blockers has been demonstrated. The tyrosine residue was identified as the active functional group for gold ion reduction. These gold nanoparticles were characterized by of UV-Vis spectrophotometer, FTIR, TEM and HrTEM. The presence of proteins was identified by FTIR, SDS-PAGE, UV-Vis and fluorescence spectroscopy. The micrograph revealed the formation of anisotropic gold nanoaprticles. The biologically synthesized gold nanotriangles can be easily coated in the glass windows which are highly efficient in absorbing IR radiations.  相似文献   

10.
A method for determining the separation curve based on molecular dimensions is described which allows calculation of the approximate pore size distribution of membranes and characterization of the skin layer of asymmetric membranes. The characteristics describing a membrane in the pressure-free state are discussed.  相似文献   

11.
12.
Thin films of 4-tricyanovinyl-N,N-diethylaniline (TCVA) were prepared for the first time using thermal evaporation technique. The molecular structure and electronic transitions of TCVA films were investigated by Fourier-transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectra. The observed vibrational wavenumbers in FTIR spectra were analysed and assigned to different normal modes of the molecule. UV-vis electronic absorption spectral measurements of TCVA films were analysed to obtain the electronic transitions and optical band gap (E(g)). Other important optical parameters such as molar extinction coefficient (varepsilon(molar)), the oscillator strength (f), and the electric dipole strength (q(2)) were also reported.  相似文献   

13.
Natural nanowires (NWs) of cellulose obtained from a marine animal tunicate display surprisingly high uniformity and aspect ratio comparable with synthetic NWs. Their layer-by-layer assembled (LBL) films show strong antireflection (AR) properties having an origin in a novel highly porous architecture reminiscent of a "flattened matchsticks pile", with film-thickness-dependent porosity and optical properties created by randomly oriented and overlapping NWs. At an optimum number of LBL deposition cycles, light transmittance reaches nearly 100% (lambda approximately 400 nm) when deposited on a microscope glass slide and the refractive index is approximately 1.28 at lambda = 532 nm. In accordance with AR theory, the transmittance maximum red-shifts and begins to decrease after reaching the maximum with increasing film thickness as a result of increased light scattering. This first example of LBL layers of cellulose NWs can be seen as an exemplary structure for any rigid axial nanocolloids, for which, given the refractive index match, AR properties are expected to be a common property. Unique mechanical properties of the tunicate NWs are also a great asset for optical coatings.  相似文献   

14.
The chemical structure and the contact and morphological properties of composite membranes prepared by electron-beam sputter deposition of a polytetrafluoroethylene layer on the surface of track-etched polypropylene membrane have been studied. It has been found that the application of such layers results in bilayer composite membranes with both the layers having hydrophobic properties. It has been shown that an increase in the thickness of the deposited polytetrafluoroethylene layer leads to development of its roughness, resulting in the formation of a polymer with superhydrophobic properties on the surface of the initial membrane.  相似文献   

15.
The electrosynthesis of copper and silver core-shell nanoparticles (NPs) by the sacrificial anode technique, employing tetraoctylammonium (TOA) salts as base electrolyte for the first time, is described. These surfactants were selected because they combine high NP stabilizing power with useful disinfecting properties. The resulting colloids were mixed with a solution of an inert dispersing polymer and used to prepare nanostructured composite thin films. The morphologies and chemical compositions of the nanomaterials were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The TEM reveals that the average core diameter of the metal NPs ranges between 1.7 and 6.3 nm, as a function of the nature of the metal and of the electrosynthesis conditions, and does not change significantly upon inclusion in the polymer matrix. An appreciable concentration of the metal is detected on the nanoparticle surface by XPS. High-resolution XP spectra indicate that both copper and silver are present at zero oxidation state in all of the materials (colloids and composite films). This demonstrates the high efficiency of the surfactant at controlling the morphology and the chemical composition of the nanodispersed metal in both the as-synthesized colloid and in the polymeric dispersion. The nanocoatings are shown to exert a marked inhibitory effect on the growth of eukaryote and prokaryote target microrganisms, and experimental evidence of a synergic disinfecting effect due to the surfactant and the nanodispersed metal is provided. On the basis of these stability and bioactivity results, it is clear that Cu-NPs and Ag-NPs are suitable for application in disinfecting or antifouling paint and coating formulations.Electronic Supplementary Material Supplementary material is available for this article at Dedicated to the memory of Wilhelm Fresenius  相似文献   

16.
17.
《先进技术聚合物》2018,29(10):2583-2592
The primary purpose of cold weather clothing is to shield the wearer from the extremities of the external environment. The thermal properties of nanofibers and their potential applications have tremendous scope and application in this area. The objective of this study was to investigate the mechanisms of heat transfer through fibrous insulation where the fiber diameter was less than 1 μm. Electrospinning process was used to produce flexible polyurethane and polyvinylidene fluoride nanofibers embedded with silica aerogel. The thermal and transport behavior of the samples was evaluated, and results were statistically analyzed. Presence of aerogel particles were confirmed through microscopic examination. Thermal behavior was investigated by using thermogravimetric analysis and differential scanning calorimetry. The results showed that the polyvinylidene fluoride nanofibrous membranes embedded with aerogel obtained a good thermal stability with lower weight loss than polyurethane nanofibrous membranes. The glass transition and melting point was not affected by the aerogel content in the layers, validating that polymers are not miscible. The increase in duration of electrospinning led to higher web thickness, which resulted in considerable decrease in air permeability. Considerable improvement of thermal insulation was observed by increasing the number and the weight per unit area of both nanofibrous membranes. The results confirmed increase in thermal insulation by embedding silica aerogel in nanofibrous membranes. With reference to the results, it could be concluded that nanofibers embedded with aerogel are good for thermal insulation in cold weather conditions. Thermal insulation battings incorporating nanofibers could possibly decrease the weight and bulk of current thermal protective clothing.  相似文献   

18.
CaCO3 crystallization on a chitosan membrane was studied using diffusion of (NH4)2CO3 vapors into a CaCl2 solution containing differing added amounts of two polyacrylic acids (PAAs) with molecular weights of ca. 2.0 x 10(3) and ca. 4.5 x 10(4). The coexistence of PAA and the chitosan membranes produced thin CaCO3 island crystals, which developed into a continuous CaCO3 film on the membranes. Continuous CaCO3 films consisting of only aragonite formed on the chitosan membranes at the optimum amount of PAA. When the amount of PAA is not optimum, the polymorph of CaCO3 switches from aragonite to vaterite, and the morphology has a tendency to become an isolated island structure. The formation of the aragonite and vaterite island crystals and the appearance of a range of added PAA suitable for their formation are explained by the action of two parallel phenomena: (a) the high concentration of Ca2+ ions in the chitosan membrane vicinity is achieved by the interaction between the -COO- groups of PAA adsorbed by the -NH3+ groups of the chitosan membrane through an electrostatic force and free Ca2+ ions in the CaCl2 solution, which produces the high supersaturation with CaCO3 in the membrane vicinity during CO2 diffusion; (b) PAA, remaining as mobile carboxylic anions in the CaCO3 solution, inhibits the growth of the CaCO3 island crystals by its adsorption. The CaCO3 supersaturation in the membrane vicinity is controlled by regulating the balance of these phenomena, which leads to the formation of the desired CaCO3 polymorph.  相似文献   

19.
Mordenite composite membranes were prepared by means of coating a porous α-alumina support with nanosized mordenite seeds followed by hydrothermal crystallization. A systematic investigation was performed on the influence of several factors such as ageing of the reaction mixture, alkalinity, salt addition and temperature on the formation of a mordenite membrane on the seeded support. The ageing of the reaction mixture reduces the growth rate of mordenite crystal along a-axis and b-axis but hardly influences the growth rate along c-axis. As a result, the boundaries between the surface crystals become a little larger with prolonging the period of ageing time. The growth rate of the mordenite crystal along individual axes increases first and then decreases with increasing concentration of sodium hydroxide. A higher alkalinity is unfavorable for the formation of a continuous mordenite membrane. The addition of salt in the reaction mixture has different effect on the growth rate of the mordenite crystal along each axis. With increasing the amount of salt, there was hardly influence on the growth rate along c-axis, whereas an obvious decline was observed in the growth rate along either a-axis or b-axis, which enlarges the boundaries between the surface crystals. The growth rate of the mordenite crystal increases more along c-axis than that along a-axis or b-axis with increasing temperature for hydrothermal crystallization. The use of a temperature as high as 473 K produces a membrane composed of bar-like crystals with larger boundaries. __________ Translated from Journal of Zhejiang University (Science Edition), 2005, 32(4) (in Chinese)  相似文献   

20.
Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.Dedicated to Professor Dr. Alan Bond on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号