共查询到20条相似文献,搜索用时 0 毫秒
1.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10 ?3 S cm ?1). The Li/GPE/LiCoO 2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g ?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO 2 (about 50 %). 相似文献
2.
The low crystallinity poly(vinylidene fluoride)/tetraethyl orthosilicate silane (PVDF/TEOS) composite separator with a finger-like pore structure for lithium-ion battery has been successfully prepared by non-solvent-induced phase separation (NIPS) technique. The PVDF/TEOS composite separator shows the excellent wettability and electrolyte retention properties compared with Celgard 2320 separator. AC impedance spectroscopy results indicate that the novel PVDF/TEOS composite separator has ion conductivity of 1.22 mS cm−1 at 25 °C, higher than that of Celgard 2320 separator (0.88 mS cm−1). The lithium-ion transference number of PVDF composite separator added 0.7% TEOS was 0.481, better than that of Celgard 2400 (0.332). What is more, the lithium-ion batteries assembled with PVDF/TEOS composite separator show good cycling performance and rate capability. 相似文献
3.
Journal of Solid State Electrochemistry - The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic... 相似文献
4.
Journal of Solid State Electrochemistry - Sulfonated poly(ether ether ketone)/poly(vinylidene fluoride)/graphene (S/P/G) composite membrane was prepared through a solution-casting method for a... 相似文献
5.
Journal of Solid State Electrochemistry - In the present work, the poly(o-phenylenediamine)/Ag (PoPD/Ag) hybrid composite with the microrod morphology was prepared by in situ chemical oxidation... 相似文献
6.
Microporous poly(vinylidene fluoride) (PVdF) separators for lithium-ion batteries, used in liquid organic electrolytes, have been characterized with respect to the swelling phenomena on dense PVdF membranes (obtained through hot pressing). In the first and second parts of this study, we have described the swelling equilibria and swelling kinetics of dense PVdF. Here the thermal properties of PVdF gels and their irreversible modifications induced by swelling are characterized. Particular attention is paid to crystallinity modifications, polymer plasticization, and membrane degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2308–2317, 2004 相似文献
7.
Superhydrophilic organic/inorganic hybrid surfaces have been fabricated on blend membranes of poly(vinylidene fluoride) (PVDF) and poly(styrene-alt-maleic anhydride) (SMA). The blend membranes were prepared from PVDF/SMA mixed solution with N,N-dimethylacetamide (DMAc) as solvent by immersion-precipitation phase inversion process. The gained blend membranes were immersed into γ-aminopropyltriethoxysilane (APTS) solution to generate SMA/silica hybrid surfaces by the reaction between anhydrides and APTS. The hybrid surfaces chemical compositions, morphologies and hydrophilicity were investigated in detail. It demonstrates that the hybrid surfaces possess micro-nano hierarchical structure and display superhydrophilicity property and good stability. Finally, the reaction and formation mechanism of the superhydrophilicity hybrid surface was discussed. 相似文献
8.
Poly(vinylidene fluoride) (PVDF)/montmorillonite (MMT) nanocomposites were prepared by melt blen- ding a kind of organically modified montmorillonite with PVDF. The morphological structures of the nanocomposites were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The re- sults indicate that organically modified montmorillonites are in the form of intercalation, exfoliation, and fragments in the PVDF matrix. For the composites, the (001) peak position of MMT was found to shift to a lower angle in XRD patterns, and some MMT fragments could be observed under TEM. MMT loading was favorable to producing the piezoelectric β phase in the PVDF matrix and caused internal stress in α crystals. At the same time, the crystallinity and spherulite size of PVDF decreased with the MMT content. MMT induced β phase is stable even at high temperatures (160℃). For these changes in morphological structures, some possible explanations were proposed based on the experimental re- sults. 相似文献
9.
Poly(vinylidene fluoride)/silica (PVDF/SiO 2) hybrid composite films were prepared via sol–gel reactions from mixtures of PVDF and tetraethoxysilane in dimethylacetamide. Their morphology, crystalline structure, and thermal, mechanical, and electrical properties were examined. For morphology measurements, scanning electron microscopy and optical microscopy were applied. X‐ray diffraction and infrared analyses showed that the crystalline structure of PVDF was not changed much by the addition of SiO 2, indicating that there was no interaction between PVDF and SiO 2. With increasing SiO 2 content, the melting temperature rarely changed, the degree of crystallinity and the dielectric constant decreased, and the decomposition temperature slightly increased. A PVDF/SiO 2 hybrid composite film with 5 wt % SiO 2 exhibited balanced mechanical properties without a severe change in the crystalline structure of PVDF, whereas for the hybrid composites with higher SiO 2 contents (>10 wt %), the mechanical properties were reduced, and the spherulite texture of PVDF was significantly disrupted by the presence of SiO 2 particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 19–30, 2002 相似文献
10.
A heat-resistant boehmite-coated polypropylene (PP) membrane has been successfully fabricated and its potential application as a promising separator in the lithium-ion battery was explored. The boehmite powders with average sizes of 0.78, 1.03, and 1.72 μm, respectively, were used to fabricate the coated membrane. It was demonstrated that the coated membrane prepared by boehmite with a 0.78-μm size showed superior heat tolerance and proper air permeability. As compared to the commercialized PP membrane, such coated membrane presented improved electrolyte uptake, better interface stability, and enhanced ionic conductivity. In addition, the lithium iron phosphate (LiFePO 4)/Li cell using this composite membrane exhibited better rate capability and cycling retention than that using PP membrane owing to its facile ion transport and excellent interfacial compatibility. The coating layer showed an advantage on solid electrolyte interface film formation and greatly reduced charge transfer resistance. All these fascinating characteristics would boost the application of this composite membrane for high-performance lithium-ion battery. 相似文献
11.
Graphene-SnS 2 nanocomposites were prepared via a solvothermal method with different loading of SnS 2. The nanostructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy
(SEM), and transmission electron microscopy (TEM). The XRD patterns revealed that hexagonal SnS 2 was obtained. SEM and TEM results indicated that SnS 2 particles distributed homogeneously on graphene sheets. The electrochemical properties of the samples as active anode materials
for lithium-ion batteries were examined by constant current charge–discharge cycling. The composite with weight ratio between
graphene and SnS 2 of 1:4 had the highest rate capability among all the samples and its reversible capacity after 50 cycles was 351 mAh/g, which
was much higher than that of the pure SnS 2 (23 mAh/g). With graphene as conductive matrix, homogeneous distribution of SnS 2 nanoparticles can be ensured and volume changes of the nanoparticles during the charge and discharge processes can be accomodated
effectively, which results in good electrochemical performance of the composites. 相似文献
12.
Different contents of carbon nanotubes (CNTs) were introduced into a miscible poly(vinylidene fluoride) ( PVDF)/poly(methyl methacrylate) ( PMMA) blend. The interfacial affinity between CNTs and components of the blend was evaluated by calculating the interfacial tension. The dispersion and microstructure of CNTs in the nanocomposites were investigated through scanning electron microscope and rheological measurement. The effect of CNTs on the crystallization of PVDF was comparatively investigated through nonisothermal and isothermal crystallization processes. The results showed that CNTs exhibited stronger interfacial affinity to PMMA. Homogeneous dispersion of CNTs in the nanocomposites was achieved. Largely enhanced crystallization temperature and increased crystallinity of PVDF were obtained by adding CNTs during the nonisothermal crystallization process. The results obtained from the isothermal crystallization process proved that CNTs induced the concentration fluctuation in the sample, which resulted in the formation of spherulites with different types, i.e., the banded spherulites and compact spherulites. Furthermore, both the crystallization temperature and the content of CNTs exhibited great influence on the crystalline morphology of PVDF. 相似文献
13.
Dielectric and thermal characterizations were performed for poly (vinylidene fluoride) (PVDF)/poly (ethyl methacrylate) (PEMA) blends of different composition. The characteristics of PVDF β relaxation were shown to be little affected in the semicrystalline blends with PEMA. The relaxation strength, however, depends strongly on the PEMA content and a linear relation was found between the intensity of the β relaxation and the weight fraction of the PVDF crystal-amorphous interphase. Phase structures of the PVDF/PEMA blends are also proposed. © 1994 John Wiley & Sons, Inc. 相似文献
14.
Journal of Solid State Electrochemistry - NaAlO2-coated LiCoO2 materials have been synthesized as cathode materials for lithium-ion batteries. The NaAlO2 layer is coated on the LiCoO2 particles... 相似文献
15.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003 相似文献
16.
The miscibility, isothermal crystallization kinetics and morphology of the poly(vinylidene fluoride)(PVDF)/poly(ethylene adipate)(PEA) blends have been studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). A depression of the equilibrium melting point of PVDF was observed. From the melting point data of PVDF, a negative but quite small value of the interaction parameter ?PVDF-PEA is derived using the Flory-Huggins equation, implying that PVDF shows miscibility with PEA to some extent. Nonisothermal and isothermal crystallization kinetics suggest that the crystallization rate of PVDF decreases with increasing the amount of PEA, and a contrary trend was found when PEA crystallizes with the increase of the amount of PVDF. It was further disclosed that the blend ratio and crystallization temperature affect the texture of PVDF spherulites greatly, which determines the subsequent crystallization of PEA. At high temperatures, e.g. 150 ℃, the band spacing of PVDF spherulites increases with the addition of PEA content and the spherulitic structure becomes more open. In this case, spherulitic crystallization of PEA is not observed for all blend compositions. At low temperatures, e.g. 130 ℃, for the PEA-rich blends, the interpenetrated structures are eventually formed by the penetration of the spherulites of PEA growing within the pre-existing PVDF spherulites. 相似文献
17.
For conductive carbon nanotube (CN)/polymer composite fibers to be obtained, CNs were incorporated into poly(vinylidene fluoride) (PVDF) in dimethylformamide (DMF) solutions and electrospun to form CN/PVDF fiber mats. The thinnest fiber was 70 nm thick. The percolation threshold for the insulator‐to‐conductor transition was 0.003 wt % CN for CN/PVDF/DMF solutions, 0.015 wt % CN for CN/PVDF spin‐coated films, and 0.04 wt % CN for CN/PVDF electrospun fiber mats. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1572–1577, 2003 相似文献
18.
We report a simple, scalable approach to improve the interfacial characteristics and, thereby, the performance of commonly used polyolefin based battery separators. The nanoparticle-coated separators are synthesized by first plasma treating the membrane in oxygen to create surface anchoring groups followed by immersion into a dispersion of positively charged SiO(2) nanoparticles. The process leads to nanoparticles electrostatically adsorbed not only onto the exterior of the surface but also inside the pores of the membrane. The thickness and depth of the coatings can be fine-tuned by controlling the ζ-potential of the nanoparticles. The membranes show improved wetting to common battery electrolytes such as propylene carbonate. Cells based on the nanoparticle-coated membranes are operable even in a simple mixture of EC/PC. In contrast, an identical cell based on the pristine, untreated membrane fails to be charged even after addition of a surfactant to improve electrolyte wetting. When evaluated in a Li-ion cell using an EC/PC/DEC/VC electrolyte mixture, the nanoparticle-coated separator retains 92% of its charge capacity after 100 cycles compared to 80 and 77% for the plasma only treated and pristine membrane, respectively. 相似文献
19.
A sponge-like poly(vinylidene fluoride)/high density polyethylene (PVDF/HDPE) separator exhibiting high ionic conductivity and transference number of Li + ion for lithium ion battery has been prepared by non-solvent induced phase separation (NIPS) method. HDPE fillers with size smaller than 250 nm are prepared with moderated reverse phase emulsion. The ion conductivity of PVDF/HDPE separator saturated with 1.0 M LiPF 6–ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1, v/ v/ v) can be up to 2.54 mS cm ?1 at 25 °C, which is higher than that of pristine PVDF separator (1.85 mS cm ?1). The transference number of lithium ion with PVDF/HDPE separator is 0.495, better than that with commercial PP separator (0.33) and pristine PVDF separator (0.27). What is more, LiCoO 2/Li cells assembled with PVDF/HDPE separator show good C-rate and cycling performance which indicates great potential in serving as a good candidate of polymer separator for lithium ion batteries application. 相似文献
20.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through dynamic vulcanization. The effects of SR content on crystallization behavior, rheology, dynamic mechanical properties and morphology of the blends were investigated. Morphology characterization shows that the crosslinked spherical SR particles with an average diameter of 2-4 μm form a “network” in the PVDF continuous phase. The dynamic mechanical properties indicate the interface adhesion between PVDF and rubber phase is improved by the dynamic vulcanization. The rheology study shows that with the increase of rubber content the blends pseudoplastic nature is retained, while the viscosity increases, and hence the processability is less good. The incorporation of SR phase promotes the nucleation process of PVDF, leading to increased polymer crystallization rate and crystallization temperature. However, a higher content of SR seems to show a negative effect on the crystallinity of the PVDF component. 相似文献
|