首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amperometric dipyrone sensor based on a polymeric nickel-salen (salen = N,N´-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. After cycling the modified electrode in a 0.50 mol L-1 KCl solution, the estimated surface concentration was found to be equal to 1.29 x 10-9 mol cm-2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the nickel(II)/nickel(III) couple. A plot of the anodic current versus the dipyrone concentration for chronoamperometry (potential fixed = +0.50 V) at the sensor was linear in the 4.7 x 10-6 to 1.1 x 10-4 mol L-1 concentration range and the concentration limit was 1.2 x 10-6 mol L-1. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.  相似文献   

2.
Zhang Y  Zeng GM  Tang L  Li YP  Chen LJ  Pang Y  Li Z  Feng CL  Huang GH 《The Analyst》2011,136(20):4204-4210
This work developed a relatively inexpensive and layers-film construction electrochemical sensor for DNA recognition and its performance was investigated. The Fe(3)O(4) magnetic nanoparticles-cysteine were immobilized on the carbon paste electrode (CPE) surface using magnetic force. Multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs), and chitosan (Chi) were used successively to coat on the electrode surface. The thiolated capture probe was assembled and competitively hybridized with the target nucleic acid and biotinylated response probe. The electrochemical behavior was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. In addition, the sensor performance was also analyzed by introducing the notion of detection efficiency. The experimental results showed that although the electron transfer capability of the CPE is less strong than that of a metal electrode used in the DNA sensor, the materials modified on the CPE could significantly improve the performance. A detection limit of 1 nM of target DNA and a sensitivity of 2.707 × 10(3) mA M(-1) cm(-2) were obtained. Although the resulting detection limit was not remarkable, further experiments could improve it.  相似文献   

3.
A mesoporous silica was synthesised and used to modify the surface of carbon paste electrode (CPE). The electrochemical behaviours of p-aminophenol were investigated. Compared to the unmodified CPE, the mesoporous silica-modified CPE obviously lowers the oxidation potential of p-aminophenol, and remarkably increases its oxidation peak current. The effects of pH value, amount of mesoporous silica, accumulation potential and time were examined. As a result, a sensitive, rapid and convenient electroanalytical method was developed for p-aminophenol. The linear range is from 0.025?mg?L?1 to 3?mg?L?1, and the limit of detection is 0.01?mg?L?1 after 2-min accumulation. Finally, the method was successfully used to determine p-aminophenol in water samples.  相似文献   

4.
The current work aimed to fabricate a new cocaine sensor of octahedral palladium-doped cobaltite composite (Oh-Pd2+ : Co3O4-C) using a simple hydrothermal protocol. As-fabricated cocaine sensing approach was validated by various methods. Energy dispersive X-ray analysis, X-ray diffraction and scanning electron microscopy were recruited to characterize our charged modified composite. The electrode could sensitively detect cocaine, with a lengthy linear range (0.01 μM–900.0 μM) and a limit of detection (1.3 nM). The quantitative cocaine determination was achieved in the biological specimens using our modified electrode, the results of which displayed admirable outcomes.  相似文献   

5.
A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL−1, and a detection limit of 0.9 μg mL−1 for SDS was obtained. Furthermore, the method has been successfully applied to the detection of SDS in real samples. The developed approach provided a simple and reliable detection for SDS and might have potential applications in electrochemical methods for inactive molecules.  相似文献   

6.
A new chiral electrochemical sensor has been successfully prepared through chemical linking l-methotrexate (l-Mtx) onto the gold electrode surface. Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the enantioselective interaction between l-Mtx and Pen enantiomers. The results showed that the l-Mtx-modified gold electrode can selectively recognize penicillamine (Pen) enantiomers using Zn(II) as central ion, and larger response signal was observed from d-Pen owing to the selective formation of Zn complexes. The interaction time between the modified electrode and Pen enantiomers containing Zn(II) was considered. And the electrochemical response of the modified electrode to a series of different concentration of Pen in the presence of Zn(II) was also monitored. In addition, the enantiomeric composition of d- and l-Pen enantiomer mixtures was monitored by measuring the current responses of the sample.  相似文献   

7.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   

8.
The present work describes a new, simple, and easy method for the generation of stable molecularly imprinted sites in polymeric film, combining self-assembled monolayer and Layer-by-layer approaches through thermal cross-linking of the layered structures, onto the surface of silver electrode. Modified silver electrodes demonstrate enantiodifferentiation and sensitive (detection limits 0.0060 ng mL(-1) for L- and 0.0062 for D-thyroxine) determination of d- and l-thyroxine with the help of differential pulse anodic stripping voltammetric technique. The binding kinetics of thyroxine was explored using anodic stripping cyclic voltammetry and chronocoulometry. The sensor was also validated for D- and L-thyroxine determinations in biological and pharmaceutical samples.  相似文献   

9.
In this article, an electrochemical sensor based on a gold nanocage (AuNC)‐modified carbon ionic liquid electrode (CILE) was fabricated and applied to the sensitive rutin determination. The presence of AuNCs on the electrode surface greatly improved the electrochemical performance of the working electrode due to its specific microstructure and high metal conductivity. Electrochemical behavior of rutin on AuNCs/CILE was studied using cyclic voltammetry and differential pulse voltammetry with the related electrochemical parameters calculated. Under the optimal experimental conditions, the oxidation peak current of rutin and its concentration had good linear relationship in the range from 4.0 × 10?9 to 7.0 × 10?4 mol/L with a low detection limit of 1.33 × 10?9 mol/L (3σ). This fabricated AuNCs/CILE was applied to direct detection of the rutin concentration in drug samples with satisfactory results, showing the real application of AuNCs in the field of chemically modified electrodes.  相似文献   

10.
In the present work, nickel-zeolite modified carbon paste electrode (Ni-ZMCPE) was prepared. The electrochemical behaviour of hydrogen peroxide at the surface of modified electrode was investigated by cyclic voltammetry and chronoamperometry in 0.1 M NaOH supporting electrolyte. The electrochemical characterization of Ni-ZMCPE exhibits redox behavior of Ni(III)/Ni(II) couple in alkaline medium. It has been shown that Ni-ZMCPE improves efficiency of the modified electrode toward hydrogen peroxide electrooxidation (It wasn’t remarkable different on ZMCPE and CPE in the presence and absence of hydrogen peroxide). Moreover, the effects of various parameters such as effect of different percents of Ni-Z to graphite, effect of pH and hydrogen peroxide concentration on the electrooxidation of hydrogen peroxide as well as stability of the Ni-ZMCPE have also been investigated. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of hydrogen peroxide in the range 0.03–0.1 and 0.3–6 mM with amperometric method. The detection limit (S/N = 3) was also estimated to be 1 μM.  相似文献   

11.
Herein, we reported a titanium oxide (TiO2) modified activated carbon nanocomposite that showed advantageous characteristics in terms of electro-conductivity, catalytic activity and surface area. The designed nanocomposite was employed to modify the screen printed carbon electrode transducer surface in the construction of an electrochemical sensor. The electrode surface modification was characterised by cyclic voltammetry and impedimetric studies. The modified transducer surface was subsequently used for the detection of four phenolic endocrine disruptors, p-nitrophenol, hydroquinone, catechol and 1-naphtol. Under optimal conditions, TiO2 modified activated carbon sensor was evaluated by differential pulse voltammetry showing a good linearity with correlation coefficients higher than 0.99. It showed, in parallel, a high sensitivity where the detection limits were 348 ng/L, 110.1 ng/L, 3.3 ng/L and 7.2 µg/L for the respective studied compounds (S/N = 3). Finally, we validated the method with river water samples, and good recovery values were obtained showing the potential application of the reported biosensor.  相似文献   

12.
In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr2Nb2O15. The material KSr2Nb2O15 is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10-5 at 1.62 x 10-3 mol L-1 (E (mV) = 32.7 + 51.1 log [K+]). The sensor based KSr2Nb2O15, of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 °C) and detection limit for the potassium ions of 7.27 x 10-5 mol.L-1.  相似文献   

13.
This work describes the electrochemical behavior of copper(II)-bis[5-((4-n-decyloxyphenyl)azo)-N-(nethanol)-salicylaldiminato]film immobilized on the surface of multiwall carbon nanotube glassy carbon electrode and its electrocatalytic activity toward the oxidation of L-cysteine. The surface structure and composition of the sensor was characterized by scanning electron microscopy. Electrocatalytic oxidation of L-cysteine on the surface of modified electrode was investigated with cyclic voltammetry, chronoamperometry and hydrodynamic amperometery methods and the results showed that the Cu-Schiff base film displays excellent electrochemical catalytic activities towards L-cysteine oxidation. The modified electrode indicated reproducible behavior and high level of stability during the electrochemical experiments.  相似文献   

14.
The syntheses of a series of chiral ureas containing the redox-active ferrocene group are described. Each of these bind chiral carboxylates in organic solvents through hydrogen-bonding interactions, as evidenced by spectroscopic and cyclic voltammetry measurements, the latter allowing these guests to be electrochemically sensed in solution. The enantioselectivity in the complexation of the protected amino acid N-benzenesulfonylproline by a ferrocenylbenzyl host is high enough to allow opposite enantiomers to be distinguished by electrochemical means.  相似文献   

15.
16.
Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.  相似文献   

17.
ABSTRACT

The rapid electrochemical determination of Aceclofenac (ACF) has been employed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) using developed OH-functionalised multiwalled carbon nanotube carbon paste electrode (OH-MWCNT/CPE). Modified electrode was characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), X-ray diffraction spectroscopy (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The ACF exhibits two oxidation peaks at +0.4 V, +0.66 V and one reduction peak at +0.3 V. The active surface area of the bare carbon paste electrode (BCPE) and modified electrode have been characterised by using K3[Fe(CN)6] solution containing 0.1 M KCl. In DPV mode, variation of ACF gave the limit of detection (LOD = 3s/m) 0.246 μM over the concentration range 1.0 to 190.0 μM (R2 = 0.9994). The developed electrode has good stability, reproducibility and could be successfully validated for the detection of ACF in pharmaceutical samples and biological fluids.  相似文献   

18.
采用水热法制备了纳米MnO2,并用红外光谱,X射线衍射(XRD)和扫描电子显微镜(SEM)对其进行了表征。将碳纳米管和纳米MnO2分散在壳聚糖溶液中,用滴涂法固定到玻碳电极表面,制成修饰电极。利用计时电流法对该葡萄糖传感器的性能进行了研究,纳米MnO2-MWCNTs复合物对葡萄糖的氧化有明显的催化作用。在优化的条件下,葡萄糖在5.0×10-5~3.0×10-2mol/L浓度范围内,计时电流与浓度之间呈线性关系,检出限为1.5×10-5 mol/L(S/N=3)。对1.0×10-3 mol/L葡萄糖溶液平行测定8次的相对标准偏差(RSD)为2.1%。该传感器可成功用于葡萄糖注射液中葡萄糖的测定,回收率在96.4%~98.6%之间。  相似文献   

19.
Zhuang Z  Su X  Yuan H  Sun Q  Xiao D  Choi MM 《The Analyst》2008,133(1):126-132
CuO nanowires have been prepared and applied for the fabrication of glucose sensors with highly enhanced sensitivity. Cu(OH)(2) nanowires were initially synthesised by a simple and fast procedure, CuO nanowires were then formed simply by removing the water through heat treatment. The structures and morphologies of Cu(OH)(2) and CuO nanowires were characterised by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The direct electrocatalytic oxidation of glucose in alkaline medium at CuO nanowire modified electrodes has been investigated in detail. Compared to a bare Cu electrode, a substantial decrease in the overvoltage of the glucose oxidation was observed at the CuO nanowire electrodes with oxidation starting at ca. 0.10 V vs. Ag/AgCl (saturated KCl). At an applied potential of 0.33 V, CuO nanowire electrodes produce high and reproducible sensitivity to glucose with 0.49 microA/micromol dm(-3). Linear responses were obtained over a concentration range from 0.40 micromol dm(-3) to 2.0 mmol dm(-3) with a detection limit of 49 nmol dm(-3) (S/N = 3). The CuO nanowire modified electrode allows highly sensitive, low working potential, stable, and fast amperometric sensing of glucose, thus is promising for the future development of non-enzymatic glucose sensors.  相似文献   

20.
Tang X  Liu Y  Hou H  You T 《Talanta》2011,83(5):1431-1414
Xanthine (Xa) determination is of considerable importance in clinical analysis and food quality control. Therefore, a sensitive nonenzymatic amperometric sensor for Xa based on carbon nanofibers (CNFs) has been proposed. The CNFs, which were prepared by electrospinning technique and subsequent thermal treatment, were used to modify carbon paste electrode (CNF-CPE) to construct the amperometric sensor device without any oxidation pretreatment. In application to Xa electrochemical determination, the CNF-CPE exhibited high electrocatalytic activity and fast amperometric response. Various experimental parameters, such as pH and applied potential were optimized. Under the optimal conditions, the dynamic linear range of Xa was 0.03-21.19 μM (R = 0.9992) with the detection limit low to 20 nM (S/N = 3). With good selectivity and sensitivity, the present system was successfully applied to estimate the freshness of fish and determine Xa in human urine, which provides potential application in food quality control and clinical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号