首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3D copper phosphate, [Cu2(PO4)(OH)] n (1), has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction analysis. In [Cu2(PO4)(OH)] n , there are two types of copper centers having distorted trigonal bipyramidal geometry and distorted octahedral geometry that are connected by the μ2-bridging of each phosphate oxygen ultimately forming a η8-PO4 bridged 3D network. The compound exhibited excellent catalytic performance in olefin epoxidation. Epoxidation of styrene and substituted styrenes, as well as bulky olefins like cycloalkenes and long-chain alkenes, is efficiently catalyzed by [Cu2(PO4)(OH)] n using tert-butylhydroperoxide in acetonitrile. The results obtained in the heterogeneous catalytic reactions show that the olefins are converted to the respective epoxides in good yield with high selectivity. [Cu2(PO4)(OH)] n was catalytically more active and selective in comparison to simple copper(II) phosphate salt in heterogeneous medium. The catalyst can be recycled and reused several times without significant loss of activity.  相似文献   

2.
The present work is about the preparation of silver (Ag)-doped manganese oxide (MnO2)/graphene oxide (GO) composite thin films are deposited by a facile and binder-free successive ionic layer adsorption and reaction (SILAR) method for the first time. The Brunauer-Emmett-Teller (BET) study revealed the nanosheets of MnO2–Ag3/GO exhibit high specific surface area of 192 m2 g?1. The tailored flower-like morphology and interconnected nanosheets of MnO2–Ag3/GO electrodes achieved high electrochemical performance. The maximum specific capacitance (Cs) of 877 F g?1 at the scan rate of 5 mV s?1 is obtained for MnO2–Ag3/GO electrode tested in 1 M sodium sulfate (Na2SO4) electrolyte with capacity retention of 94.57% after 5000 cycling stability. The MnO2–Ag3/GO composite-based flexible solid state symmetric supercapacitor (FSS-SSC) device delivered Cs as 164 F g?1 with specific energy of 57 Wh kg?1 at specific power of 1.6 kW kg?1 and capacitive retention of 94% after 10,000 cycles.  相似文献   

3.
Two-dimensional covalent organic frameworks (COFs) are polymer networks that organize molecular building blocks into porous, layered structures of interest for organic optoelectronic and energy storage devices. Current synthetic methods produce these materials as either insoluble, microcrystalline powders or as oriented thin films on various substrates, including single-layer graphene (SLG). Under these conditions, COF thin films form on both the graphene-coated and bare regions of the substrate, suggesting uncontrolled nucleation processes that occur either in solution or nonselectively on different surfaces. Here, we describe modified polymerization conditions that provide COF films selectively on SLG. This finding enables COF films to be grown on lithographically patterned SLG substrates, which provide insight into the uniformity of film growth across the substrate and factors relevant to their nucleation and growth. The ability to grow COF films selectively on lithographically patterned SLG will facilitate their integration into devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 378–384  相似文献   

4.
The coordination of adenine to Ni(2+) forms a dimer unit which can be linked by 3,5-pyrazoledicarboxylic acid into chains which assemble under hydrothermal conditions via hydrogen bonding into a robust porous network. The material displays selectivity for CO(2) over CH(4) and an isosteric heat which increases with guest loading.  相似文献   

5.
The morphology of electrically conductive metal–organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal–organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal–organic frameworks.

The morphology of a copper-based 2D conductive metal–organic framework can be tuned via controlled ligand oxidation. Using quinone oxidants, we show how partial ligand oxidation prior to metal binding alters the nanocrystal aspect ratio by >60-fold.  相似文献   

6.
Silica supported ZnO was modified with alkaline promoters to reduce its dehydrating activity towards 1-octanol and 2-ethyl-1-hexanol. Neutralization of zinca acidic centers led to the significant decrease of the yields of alkenes formed during dehydration. Simultaneously, the enhancement of ZnO dehydrogenating activity was observed. The effect of modifier diminished in the sequence: K2CO3>KOH>Na2CO3.  相似文献   

7.
We have demonstrated the efficient synthesis of Pd(II)-based 2D mesoporous covalent organic framework (COF) along with a small amount of Pd(0), which is characterized by different characterization tools. These studies suggest that this material with low bandgap energy (Eg) of 1.73 eV can exhibit great photocatalytic activity toward CO2 fixation reaction. Therefore, we have applied the Pd(II)-loaded COF as a new and effective photocatalyst for the preparation of oxazolidinone through the chemical fixation of CO2. The reaction takes place in green solvent (H2O) in absence of any base and under the sunlight at atmospheric pressure of CO2 without using any cocatalyst. The reaction does not happen in the dark. In this context, we showed that a turnover number (TON) of 3.392 × 103 can be achieved using the catalytic cycle under sunlight. The light dependency of the reaction is also checked by a control experiment via light modulation between light on and off. Furthermore, the catalyst shows efficient reusability for multiple reaction cycles, and also the heterogeneity test of the material suggests minimal active metal leaching during the catalysis reaction cycles. These results for the photocatalytic synthesis of oxazolidinone by CO2 incorporation over COF under sunlight open a new environment-friendly green pathway for the formation of oxazolidinones.  相似文献   

8.
Selective synthetic routes to coordination polymers [Cu(bpy)(2)(OTf)(2)](n) (bpy = 4,4'-bipyridine, OTf = trifluoromethanesulfonate) with 2- and 3-dimensionalities of the frameworks were established by properly choosing each different solvent-solution system. They show a quite similar local coordination environment around the Cu(II) centers, but these assemble in a different way leading to the 2D and 3D building-up structures. Although the two kinds of porous coordination polymers (PCPs) both have flexible frameworks, the 2D shows more marked flexibility than the 3D, giving rise to different flexibility-associated gas adsorption behaviors. All adsorption isotherms for N(2), CO(2), and Ar on the 3D PCP are of type I, whereas the 2D PCP has stepwise gas adsorption isotherms, also for CH(4) and water, in addition to these gases. The 3D structure, having hydrophilic and hydrophobic pores, shows the size-selective and quadrupole-surface electrical field interaction dependent adsorption. Remarkably, the 2D structure can accommodate greater amounts of gas molecules than that corresponding to the inherent crystallographic void volume through framework structural changes. In alcohol adsorption isotherms, however, the 2D PCP changes its framework structure through the guest accommodation, leading to no stepwise adsorption isotherms. The structural diversity of the 2D PCP stems from the breathing phenomenon and expansion/shrinkage modulation.  相似文献   

9.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

10.
A polyoxometalate based composite material (NiPW12NP/FrGO) was synthesized successfully, in which the nanoparticle of a polyoxometalate compound (NiPW12NP) distributes on carboxylate group functionalized reduced graphene oxide (FrGO) homogenously. There exist intensive chemical bonds between NiPW12NP and FrGO, which guarantees the stability of this composite material. When employed as a cathode material, NiPW12NP/FrGO exhibits high specific capacitance, remarkable rate capability and long-term stability. When the current density is 4 A g−1, a specific capacitance as high as 437.6 F g−1 is achieved by NiPW12NP/FrGO. With NiPW12NP/FrGO serving as cathode and MnO2 acting as anode, a high performance asymmetric supercapacitor (ASC) is assembled, which possesses a high energy density of 12.96 W h·kg−1 at 0.67 kW kg−1. It also shows a good rate capability, when the current density increases from 4 to 12 A g−1, its specific capacitances decreases from 115.2 to 90.9 F g−1, with 78.9% capacitance retention. After 5000 cycles charge-discharge experiments, 94.3% of its capacitance can be maintained, which exhibits good stability. Furthermore, NiPW12NP/FrGO composite material also shows excellent tetracycline adsorption ability with capacity 288.28 mg g−1, the adsorption can be well described with Temkin model, which suggests electrostatic attraction dominates the adsorption process.  相似文献   

11.
In this contribution, a novel high-temperature CO2 adsorbent consisting of Mg-Al layered double hydroxide(LDH) and graphene oxide(GO)nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO2 adsorption capacity and the multicycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO2 capture capacity of the adsorbent could be further increased by doping with 15 wt%K2CO3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.  相似文献   

12.
Here we report a facile approach to synthesize a novel nanostructured thin film comprising Cu nanoparticles (NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE) via the direct electrochemical reduction of a mixture of cupper and graphene oxide (GO) precursors. The effect of the applied potential on the electrochemical reduction of CO2 was investigated using linear sweep voltammetric (LSV) and chronoamperometric (CA) techniques. Carbon monoxide and formate were found as the main products based on our GC and HPLC analysis. The electrochemical reduction of CO2 at the Cu/rGO thin film was further studied using in situ ATR-FTIR spectroscopy to identify the liquid product formed at different applied cathodic potentials. Our experimental measurements have shown that the nanostructured Cu/rGO thin film exhibits an excellent stability and superb catalytic activity for the electrochemical reduction of CO2 in an aqueous solution with a high current efficiency of 69.4% at − 0.6 V vs. RHE, promising for the efficient electrochemical conversion of CO2 to valuable products.  相似文献   

13.
A novel 3D metal-organic framework with predesigned cubic building blocks and 1D open channels exhibiting significant N2 adsorption has been synthesized and characterized by single crystal X-ray diffraction analysis.  相似文献   

14.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

15.
A new ordered (Li/Ag)CoO(2) layered compound with an unusual oxygen packing combining rock salt and delafossite layers is obtained during the (Li(+), Na(+))/Ag(+) ionic exchange from the OP4-(Li/Na)CoO(2) precursor. This compound is actually an intermediate step to the final D4-AgCoO(2) delafossite and can be isolated thanks to the kinetics difference between the Li(+)/Ag(+) and Na(+)/Ag(+) exchange processes. It crystallizes in the P6(3)/mmc space group with cell parameters a(hex.) = 2.848(3) ? and c(hex.) = 21.607(7) ?. The details of the structure as well as its thermal stability and transport properties are presented and discussed.  相似文献   

16.
An electronically conducting 3D network of reduced graphene oxide (RGO) was introduced into LiNi(1/3)Mn(1/3)Co(1/3)O(2) (LNMC) cathode material in a special nano/micro hierarchical structure. The rate test and cycling measurement showed that the hierarchical networks remarkably improve the high rate performance of LNMC electrode for lithium-ion batteries. The effect of RGO conducting networks on kinetic property was investigated by electrochemical impedance spectroscopy (EIS) and potentiostatic intermittent titration (PITT). The EIS results reveal that the RGO network greatly decreases the resistance of lithium batteries, especially the charge transfer resistance which can be attributed to the significantly improved conducting networks. The enhancement of apparent diffusion coefficient by the RGO conducting networks is shown by PITT. The power performance was found to be limited by the electrical conduction in the two-phase region, which can be greatly facilitated by the hierarchical RGO network together with carbon black. The as-obtained LNMC/RGO cathode exhibits an outstanding electrochemical property supporting the design idea of electronically conducting 3D networks for the high-energy and high-power lithium-ion batteries.  相似文献   

17.
For the expansion of a rectangular cavity (RC) defined by two isonicotinic acid (isoH) dimers as bridging ligands and two SCN bridges, we conducted a structural extension based on the elongation of the bridging ligands by the replacement of isoH with longer 4-pyridyl-substituted carboxylic acid (PCA). For this purpose, the following three PCAs have been employed: trans-3-(4-pyridyl)propenoic acid (acrylH), 4-(4-pyridyl)benzoic acid (pybenH), and trans-3-(4-(4-pyridyl)phenyl)propenoic acid (pppeH). Self-assembly of Ni2+, SCN-, and each of four PCAs involving isoH, acrylH, pybenH, and pppeH in the presence of an aromatic guest gave four inclusion compounds formulated as [Ni(SCN)2(isoH)2].1/2(benz[a]anthracene) (1), [Ni(SCN)2(acrylH)2].1/2(benz[a]anthracene) (2), [Ni(SCN)2(pybenH)2].(pyrene) (3), and [Ni(SCN)2(pppeH)2](3/)(2).(benz[a]anthracene) (4). X-ray crystal structural determination of 1-4 revealed that the proposed structural extension was successful. Their crystal structures are layered structures of two-dimensional (2D) grid-type coordination frameworks (2D host layers) framed with bridging ligands of the corresponding PCA dimers and 1D chains consisting of Ni2+ ions and mu(1,3)-SCN- ions. The lengths of the PCA dimers are 12.269(5) A (isoH dimer), 16.890(4) A (acrylH dimer), 20.89(2) A (pybenH dimer), 25.387(3) A (pppeH dimer A), and 25.527(4) A (pppeH dimer B). Each 2D host layer has RCs defined by the two corresponding PCA dimers and the two SCN bridges. The dimensions of RCs are expanded in proportion to the increase in the lengths of the PCA dimers: 29.52 x 5.60-7.20 A2 (4) > 24.95 x 5.46-7.38 A2 (3) > 20.88 x 5.49-7.25 A2 (2) > 16.41 x 5.53-7.43 A2 (1). These expansions reflect the number of aromatic guests that can be included in RCs. RC of 1 include only one molecule of benz[a]anthracene, whereas RCs of 3 or 4 includes two molecules of pyrene or benz[a]anthracene, respectively. Comparison of the lengths between the PCA dimers and 4,4'-bipyridine-type ligands demonstrated that a design strategy-the preparation of a bridging ligand through self-assembly of two PCAs-is both efficient and particularly suitable for the preparation of very long bridging ligands.  相似文献   

18.
A crystalline 1 : 2 adduct of aquatrifluoroboron and triphenylphosphine oxide 1/2[BF3(H2O)] · Ph3PO(I) is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic, space group Fdd2, a = 32.283 Å, b = 20.162 Å, c = 10.191 Å, Z = 16. The structure is solved by the direct method and refined by a full-matrix least-squares method in the anisotropic approximation to R = 0.054 against 2528 independent reflections (CAD4 automated diffractometer, MoK). A Ph3PO molecule has a normal structure. A [BF3(H2O)] molecule is randomly disordered relative to axis 2; populations of positions of all its atoms are 0.5. The boron atom has a distorted tetrahedral coordination with a donor-acceptor B-O(w) bond. In crystal, strong hydrogen bonds of the P=OH-O-HO=P type are formed between the H2O molecule and two Ph3PO molecules.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 12–16.Original Russian Text Copyright © 2005 by Chekhlov.  相似文献   

19.
A covalently cross‐linked graphene oxide (GO) as a catalyst was prepared by a cross‐linking process using the nucleophilic reaction of zirconium (IV)‐coordinated 5,10,15,20‐tetrakis (aminophenyl)porphyrin (ZrPPh) with carboxyl groups of the edges of GO (GO‐ZrPPh). The chemical structure of catalyst was characterized by different analyses such as FT‐IR, SEM, TEM, EDS, ICP, TGA and UV. All analyses confirm the occurrence of successfully covalent immobilization of ZrPPh on the GO. Also, TEM and SEM images show that ZrPPh has been immobilized in the both of the edges and the basal plane of GO. The activity of the catalyst was studied for the synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones via Biginelli reaction. The cross‐linked catalyst is able to catalyze the reaction in short reaction times and good to excellent yields.  相似文献   

20.
We apply genetic algorithm combining directly with density functional method to search the potential energy surface of lithium‐oxide clusters (Li2O)n up to n = 8. In (Li2O)n (n = 1–8) clusters, the planar structures are found to be global minimum up to n = 2, and the global minimum structures are all three‐dimensional at n ≥ 3. At n ≥ 4, the tetrahedral unit (TU) is found in most of the stable structures. In the TU, the central Li is bonded with four O atoms in sp3 interactions, which leads to unusual charge transformation, and the probability of the central Li participating in the bonding is higher by adaptive natural density partitioning analysis, so the central Li is in particularly low positive charge. At large cluster size, distortion of structures is viewed, which breaks the symmetry and may make energy higher. The global minimum structures of (Li2O)2, (Li2O)6, and (Li2O)7 clusters are the most stable magic numbers, where the first one is planar and the later both have stable structural units of tetrahedral and C4v. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号