首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang P  Gai S  Lin J 《Chemical Society reviews》2012,41(9):3679-3698
In the past decade, non-invasive and biocompatible mesoporous silica materials as efficient drug delivery systems have attracted special attention. Great progress in structure control and functionalization (magnetism and luminescence) design has been achieved for biotechnological and biomedical applications. This review highlights the most recent research progress on silica-based controlled drug delivery systems, including: (i) pure mesoporous silica sustained-release systems, (ii) magnetism and/or luminescence functionalized mesoporous silica systems which integrate targeting and tracking abilities of drug molecules, and (iii) stimuli-responsive controlled release systems which are able to respond to environmental changes, such as pH, redox potential, temperature, photoirradiation, and biomolecules. Although encouraging and potential developments have been achieved, design and mass production of novel multifunctional carriers, some practical biological application, such as biodistribution, the acute and chronic toxicities, long-term stability, circulation properties and targeting efficacy in vivo are still challenging.  相似文献   

2.
Drug forms based polymer carriers of prolong action were created for toxicologic effect of drug to be reduced in spite of long treatment of diseases. In present work a number of synthesis and natural polymers have been studied as carriers of antituberculous drugs for controlled delivery application. Following as drugs as isoniazid and ethionamide were incorporated into polymeric matrix (segmented polyurethanes, polyvinyl alcohol) and chemically bound with the polymer chain by covalent or electrostatic forces (aldehyde- and carboxymethylderivatives of polysaccharides). Biodegradation of polymeric systems and the release of drugs were studied by various physico-chemical methods. It was shown that the drug release depends of method of the immobilization, type of the drug/polymer bonding, drug loading. The bacteriostatic activity of obtained systems was determined. The possibility of tuberculosis treatment was proved in experiments of animals.  相似文献   

3.
The versatile pharmaceutical material cyclodextrin’s (CDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. By the early 1950s the basic physicochemical characteristics of cyclodextrins had been discovered, since than their use is a practical and economical way to improve the physicochemical and pharmaceutical properties such as solubility, stability, and bioavailability of administered drug molecules. These CDs can serve as multi-functional drug carriers, through the formation of inclusion complex or the form of CD/drug conjugate and, thereby potentially serving as novel drug carriers. This contribution outlines applications and comparative benefits of use of cyclodextrins (CDs) and their derivatives in the design of novel delivery systems like liposomes, microspheres, microcapsules, nanoparticles, cyclodextrin grafted cellulosic fabric, hydrogels, nanosponges, beads, nanogels/nanoassemblies and cyclodextrin-containing polymers. The article also focuses on the ability of CDs to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, drug safety, drug stability, and the ability to deliver a drug to targeted site. The article highlight’s on needs, limitations and advantages of CD based delivery systems. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.  相似文献   

4.
Oral controlled drug delivery systems have become an essential part of the development of new medicines. In this investigation, several controlled release drug delivery systems with various structures were designed and evaluated. The materials used in their preparation were mainly hydropolymers that play a dominant role as drug carriers. Polymer selection is determined by the intended use and the desired release profile. The design of the devices was based on a matrix tablet, which is used as a core tablet for the preparation of all other systems such as multilayer systems, core in cup systems and hybrid systems. The findings of the study indicate that all systems exhibit controlled release characteristics. Furthermore, the structure of the device appears to significantly affect its behavior, i.e., the drug release and its release rate. Increasing the covered area of the core tablet results in a decrease of drug release since the cover hindrances the contact of the liquid with the core surface and modifies its dissolution and consequently its release. The hybrid systems exhibited pulsatile release, a feature offering significant advantages for certain therapies. Furthermore, the materials used considerably influence the behavior and function of the system. These effects may be attributed to the nature and the properties of the materials employed. Release mechanisms are also affected considerably by these factors.  相似文献   

5.
Recent advances in the preparation/loading, surface properties, and applications of polymer-based colloidal drug delivery and release systems, such as block copolymer micelles, polymer nano- and microparticles, polymer-modified liposomes, and chemical and physical hydrogels are presented. Drug release from polymer-based systems is affected by the drug–polymer interactions as well as the polymer microstructure and dissociation/erosion properties. Surface modification with poly(ethylene oxide) has become common in improving the biocompatibility and biodistribution of drug delivery carriers. Site-specific drug delivery can be achieved by polymer-based colloidal drug carriers when ligands of targeting information are attached on the carrier surface or when a phase transition is induced by an external stimulus. While significant progress in being made, many challenges remain in preserving the biological activity and attaining the desired drug release properties, especially for protein and DNA drugs.  相似文献   

6.
Hydrogel networks of α, β or γ-cyclodextrin (CD) and mixtures of α/β or β/γ CDs have been obtained using epichlorohydrin (EP) as a crosslinking agent. Discs of the resulting polymers were evaluated as drug carriers for controlled release using the antiinflammatory naproxen (NAP) as a model drug. βCD polymer (βCDP) has shown the highest amount of drug loaded and the lowest one corresponds to the polymer containing αCD, in agreement with the affinities of NAP for the corresponding cyclodextrins.  相似文献   

7.
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices has received special attention during the past two decades. PLA and its copolymers with GA and/or PEG appear as the preferred substrates to fabricate these devices. The methods of fabrication of these particles will be reviewed in this article, describing in detail the experimental variables associated with each one with regard to the influence of them on the performance of the particles as drug carriers. An analysis of the relationship between the method of preparation and the kind of drug to encapsulate is also included. Furthermore, certain issues involved in the addition of other monomeric substrates than lactic acid to the particles formulation as well as novel devices, other than nano- and microparticles, will be discussed in the present work considering the published literature available.  相似文献   

8.
《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end.  相似文献   

9.
A new strategy has been developed for the controlled release of a hydrophobic anticancer drug, camptothecin (CPT), which suffers a limited therapeutical utility because of its poor water solubility. CPT was first solubilized in the solution of a cationic surfactant, dodecyltrimethylammonium bromide (DTAB). It has been demonstrated that the presence of DTAB has increased the solubility of CPT significantly. In a 50 mM DTAB solution, the drug’s solubility was enhanced to 85 μM, 22 times of its solubility in pure water. The micellar drug solution of CPT-DTAB was subsequently used to prepare agarose hydrogels, which act as the drug carriers in the release studies. To fully take advantage of the cationic property of DTAB, negatively charged κ-carrageenan was added as a guest polymer in some hydrogel samples. The release of CPT from these hydrogel-surfactant systems was performed at 37 °C and the effects of DTAB and κ-carrageenan on the release of CPT were studied respectively. By fitting to the well-known Fickian diffusion model, the diffusion coefficients of CPT were obtained.  相似文献   

10.
An electrically controlled drug release (ECDR) system based on sponge-like nanostructured conducting polymer (CP) polypyrrole (PPy) film was developed. The nanostructured PPy film was composed of template-synthesized nanoporous PPy covered with a thin protective PPy layer. The proposed controlled release system can load drug molecules in the polymer backbones and inside the nanoholes respectively. Electrical stimulation can release drugs from both the polymer backbones and the nanoholes, which significantly improves the drug load and release efficiency. Furthermore, with one drug incorporated in the polymer backbone during electrochemical polymerization, the nanoholes inside the polymer can act as containers to store a different drug, and simultaneous electrically triggered release of different drugs can be realized with this system.  相似文献   

11.
Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.  相似文献   

12.
This paper reports the research results which the anticancer drugs Ara-C with controlled slow release were made by radiation induced polymerization of monomers such as methacrylates at room temperature. Our studies showed that not only hydrophilic synthetic polymers but also hydrophobic polymers such as hydrophobic methacrylates (including MMA, EMA, and BMA) could be used to the immobilization. In vitro the rate of drugs release was controlled by the many factors such as the content of drugs, the monomer material, the crosslinking agent, the irradiation dose and the water content, etc.  相似文献   

13.
An inexpensive and simple method was adopted for the preparation of chitosan microspheres, crosslinked with glutaraldehyde (GA), for the controlled release of an insoluble drug‐ibuprofen, which is a commonly used NSAID (non‐steroidal anti‐inflammatory drug). The chitosan microspheres were prepared by different methods and varying the process conditions such as rate of stirring, concentration of crosslinking agent, and drug:polymer ratio in order to optimize these process variables on microsphere size, size distribution, degree of swelling, drug entrapment efficiency, and release rates. The absence of any chemical interaction between drug, polymer, and the crosslinking agent was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) techniques. The microspheres were characterized by optical microscopy, which indicated that the particles were in the size range of 30–200 µm and scanning electron microscopy (SEM) studies revealed a smooth surface and spherical shape of microspheres. The microsphere size/size distributions were increased with the decreased stirring rates as well as GA concentration in the suspension medium. Decreasing the concentration of crosslinker increased the swelling ratio whereas extended crosslinking exhibited lowered entrapment efficiency. The in vitro drug release was controlled and extended up to 10 hr. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
《中国化学快报》2022,33(4):1923-1926
Light-responsive carriers have been used for the controlled release of antitumor drugs in recent years. However, most light-responsive vectors require high-energy ultraviolet or visible light to achieve local drug release, and ultraviolet light would cause cellular damage. Near-infrared light has a deeper tissue-penetration depths and minimal harm to tissues, but it is difficult to cleave the chemical bond directly. The aim of this study is to develop a novel near-infrared light-responsive carrier for local release of antitumor drugs. Unsaturated phospholipids can be oxidized by singlet oxygen to achieve liposomal drug release, and singlet oxygen can be produced by photosensitizer under light irradiation. A new near-infrared light-responsive nanoliposome was designed that imparts light-triggered local drug release. Nanoliposomes, which were composed of matrix phospholipids and unsaturated phospholipids, were prepared by ammonium sulfate gradient method, and loaded with antitumor drug doxorubicin (DOX) and photosensitizer 1,4,8,11,15,18,22,25-octabutoxypalladium phthalocyanine. Under near-infrared light, photosensitizers could produce singlet oxygen and damage tumor cells by photodynamic therapy. Simultaneously, the unsaturated phospholipids were oxidized by singlet oxygen and result in DOX release, causing sustained cell damage by chemotherapy. Near-infrared light-responsive nanoliposomes exhibit enhanced anticancer activity owing to combined treatment of photodynamic therapy and chemotherapy. A new platform is thus offered for designing effective intracellular drug-release systems, holding great promise for future cancer therapy.  相似文献   

15.
(Bio)degradation in response to external stimuli (stimuli-responsive degradation, SRD) is a desired property in constructing novel nanostructured materials. For polymer-based multifunctional drug delivery applications, the degradation enables fast and controlled release of encapsulated therapeutic drugs from delivery vehicles in targeted cells. It also ensures the clearance of the empty device after drugs are delivered to the body. This review summarizes recent development of various strategies to the design and synthesis of self-assembled micellar aggregates based on novel amphiphilic block copolymers having different numbers of stimuli-responsive cleavable elements at various locations. These cleavable linkages including disulfide, acid-labile, and photo-cleavable linkages are incorporated into micelles, and then are cleaved in response to cellular triggers such as reductive reaction, light, and low acid. The well-designed SRD micelles have been explored as controlled/enhanced delivery vehicles of drugs and genes. For future design and development of effective stimuli-responsive degradable micelles toward tumor-targeting delivery applications in vivo, a high degree of control over degradation for tunable release of encapsulated anticancer drugs as well as bioconjugation for active tumor-targeting is required.  相似文献   

16.
This paper presents a new approach in the field of controlled drug delivery systems using a novel quantum dot (QD). We developed a system for polymeric microencapsulated drugs which is conjugated to near infrared (NIR) absorbing quantum dots and tested the feasibility of burst release of a model drug, heparin, from microcapsules triggered by irradiation. We have shown the burst release of heparin from microcapsules can be achieved by irradiation. This system is designed to externally modulate drug release in response to physiological needs by control of the intensity and period of irradiation. These results suggest that QD can be a key component to be used for triggering the release of drugs for various clinical applications. We further investigated the heparin incorporation into and release from decellularized blood vessels for potential application of functionalized heparin for vascular graft engineering.  相似文献   

17.
The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.  相似文献   

18.
In this study, with the aim of designing an ideal anticancer drug carrier, we synthesized novel amphiphilic graft copolymers, P(Glu-alt-PEG)-graft-PCLA, based on poly(ethylene glycol) (PEG) segments and glutamic acid (Glu) units as the hydrophilic main chain, and poly(?-caprolactone-co-lactide) (PCLA) as hydrophobic branches. The chemical structure of the copolymers was characterized by (1)H MNR and FT-IR. The self-assembly of the copolymers to form micelles was studied by TEM, DLS and fluorescence spectroscopy. In vitro doxorubicin controlled release studies demonstrated that these graft copolymer micelles had high drug loading capacity and good controlled released properties, demonstrating their potential as a novel anticancer drug carrier. The drug loaded graft copolymer micelles exhibited efficient inhibition of HeLa cells in in vitro studies.  相似文献   

19.
In the present work methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels were synthesized by free radical copolymerization of methyl methacrylate (MMA) and itaconic acid (IA) using ethylene glycol dimethacrylate (EGDMA) and methylene bisacrylamide (MBAAm) as crosslinkers and benzoyl peroxide as initiator. Selected samples were loaded with model drug lactulose. For the lactulose release, the effect of pH, monomeric compositions, degree of crosslinking were investigated. The release of lactulose was studied for 8 h period in USP phosphate buffer solutions of varying pH 1.2, 5.5, 6.5 and 7.0. The drug release data were fitted into various kinetics models like the zero order, first order, Higuchi and Peppas. The release kinetics of lactulose from MMA/IA hydrogels was found to be best described by the Peppas model. Results showed that drug release increased by increasing IA content in the hydrogels but the effect of changing of crosslinking ratio on drug release was not significant. The surface morphology of MMA/IA drug loaded hydrogel was studied by SEM which revealed uniform distribution of the drug in the hydrogels. In conclusion, it can be said that lactulose can be successfully incorporated into crosslinked MMA/IA hydrogels and its release can be modulated by changing the mole fraction of the acid component in the gels.  相似文献   

20.
Drug release mechanism from silicone carrier differs depending on physicochemical properties of the drug. So far, there have been few reports on controlled release of insoluble drug and on simultaneous release of two kinds of water-soluble drugs. The purposes of this study are to establish methods for (1). continuous release of insoluble drug, and (2). release of two kinds of water-soluble drugs from silicone carrier. Polystyrene beads (PSTB) and proteins such as interferon (IFN) and human serum albumin (HSA) were used as model drugs. PSTB was released from silicone only when citric acid (CA) and sodium bicarbonate (SB) existed as additives. The release patterns of IFN and HSA were almost same in the case of matrix and covered-rod formulations, but double-layered formulation released them in different patterns. As far as we are aware, this is the first report on the release of insoluble drug from silicone and the controlled release of two kinds of water-soluble drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号