首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-arginine hydrochloride monohydrate and L-arginine hydrobromide monohydrate single crystals are irradiated by 100 MeV Ag8+ swift heavy ions. The residual gases liberated from the irradiated samples are monitored as a function of ion fluence using quadrupole mass analyzer. The C2H3+, C2H2, N2, CO, HCl and CO2 are the dominant gases liberated. Fourier transform infrared spectra of irradiated crystals explain the breaking of bonds in a localized region of the crystals. The crystallinity of irradiated crystals is analyzed by powder X-ray diffractions.  相似文献   

2.
The effects of CuCl2 and ZnCl2 on the viscosity in aqueous ethanol mixtures (10%–50% v/v) were studied in the concentration range 1.0×10−2–8.0×10−2 mol·dm−3 at different temperatures. It was found that the viscosities increased with an increase in the concentration of the salts and percent composition of ethanol content, whereas it decreased with an increase in temperature. Ion-ion and ion-solvent interactions are determined with the help of A- and B-coefficients of Jones-Dole equation. The values of A- and B-coefficients are irregular and increase with a rise in temperature and also with an increase in ethanol contents for both salts. Negative values of B-coefficients show that ion solvent interactions is comparatively small and suggest that CuCl2 and ZnCl2 behave as structure breakers in aqueous ethanol mixtures. Thermodynamic parameters like the energy of activation (E η ) and change in entropy of activation (ΔS*) were also evaluated which confirm the structure breaker behavior of salts in aqueous ethanol mixtures.  相似文献   

3.
4.
Single crystals of the Rb4H2I2O10· 4H2O were synthesized for the first time and studied by X-ray diffraction analysis. The crystals are monoclinic, a = 7.321(6) Å, b = 12.599(8) Å, c = 8.198(8) Å, = 96.30(7)°, Z = 2, space group P21/c. The H2I2O10 4– anion is formed by the edge-sharing IO6 octahedra. The anions are united by hydrogen bonds into a chain running along the x axis. The chains are combined by water molecules into a three-dimensional structure through hydrogen bonds. The compound is a proton conductor. The conductivity values measured at 20–60°C vary within 10–6 to 10–4 ohm–1 cm–1.  相似文献   

5.
6.
Compounds p-HOOCC6F4COOH · H2O (H2L · H2O), [Tb2(H2O)4(L)3 · 2H2O] n (I), and Tb2(Phen)2(L)3 · 2H2O (II) are synthesized. According to the X-ray structure analysis data, the crystal structure of H2L · H2O is built of centrosymmetric molecules H2L and molecules of water of crystallization. The crystal structure of compound I is built of layers of coordination 2D polymer [Tb2(H2O)4(L)3] n and molecules of water of crystallization. The ligands are the L2? anions performing both the tetradentate bridging and pentadentate bridging-chelating functions. The coordination polyhedron TbO9 is a distorted three-capped trigonal prism. Acid H2L manifests photoluminescence in the UV region (??max = 368 nm). Compounds I and II have the green luminescence characteristic of the Tb3+ ions, and the band with ??max = 545 nm (transition 5 D 4?? 7 F 5) is maximum in intensity. The photoluminescence intensity of compound II is higher than that for compound I.  相似文献   

7.
The infrared, Raman and inelastic neutron scattering (INS) spectra of TSA·6H2O and TPA·6H2O are in agreement with those expected for the presence of H5O+2 ions. Force fields for different assignment schemes are compared with the observed vibrational frequencies and the INS spectral profile. All but two schemes are eliminated. Whilst low-resolution INS spectroscopy cannot distinguish between these two schemes, the orientations of the vibrational ellipsoids for one scheme are in better agreement with those reported from low-temperature crystallographic studies of the H5O+2 ion.  相似文献   

8.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

9.
10.
In a previous work (ref. 1) we observed important changes in the 1700–1400 cm−1 region of FTIR spectra in 2H2O solutions when 5′-GMP concentration increases. These changes can be attributed to the self-association of this mononucleotide. Recently, study of this process has been extended to other regions of the spectrum and to H2O solution. Fourier deconvolution has been employed in order to resolve the broad band into component bands. Differences have been observed between spectra in H2O and 2H2O for the same solute concentration. The possible causes of these differences are indicated.  相似文献   

11.
The crystal and molecular structures of the K[EuIII(Edta)(H2O)3] 3.5H2O (I) (H4Edta = ethylenediaminetetraacetic acid) and K4[Eu2III(HTtha)2] 13.5H2O (II) (H6Ttha = triethylenetetraminehexaacetic acid) complexes have been determined by single-crystal X-ray diffraction analyses. The crystal of I belongs to orthorhombic crystal system and Fdd2 space group. The crystal data are as follows: a = 1.9849(6)nm, b = 3.5598(11)nm, c = 1.2222(4)nm, V = 8.636(5)nm3, Z = 16, M = 596.37, (calcd) = 1.835g/cm3, µ= 3.166mm–1, and F (000) = 4752. The final R and wR values are 0.0269 and 0.0692 for 2936 (I > 2.0 (I)) reflections and 0.0317 and 0.0708 for all 7284 unique reflections, respectively. The [EuIII(Edta)(H2O)3] complex anion has a nine-coordination pseudo-monocapped square antiprismatic structure in which the nine coordinated atom are two N and seven O atoms (four from one Edta ligand and three water molecules). The crystal of II belongs to monoclinic system and P21/n space group. The crystal data are as follows: a = 1.1337(3)nm, b = 2.5753(6)nm, c = 2.2138(6) nm, = 102.871(5)°, V = 6.301(3) nm3, Z = 4, M = 1682.33, (calcd) = 1.773g/cm3, = 2.339mm–1, and F(000) = 3404. The final R and wR are 0.0514 and 0.0906 for 11144 (I> 2.0(I)) reflections and 0.0976 and 0.1068 for all 26 048 unique reflections, respectively. The whole complex molecule is composed of two close parts in which every one has a nine-coordination structure as a distorted monocapped square antiprism. The Ttha ligand in the [Eu 2III(HTtha)2]4– complex anion coordinates to one central Eu 3+ ion with three N atoms and four O atoms and to the other Eu3+ ion with two O atoms.From Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 901–909.Original English Text Copyright © 2004 by J. Wang, X. Zhang, Y. Zhang, Y. Wang, X. Liu, Z. Liu.This article was submitted by the authors in English.  相似文献   

12.
Tartratogermanate acid was obtained for the first time as the dioxonium complex (H5O2)[(H2O)2Ge(??-Tart)2Ge(OH)] · 4H2O (I) by the reaction of germanium tetrachloride with D-tartaric acid (H4Tart) in 85% acetic acid. The complex was characterized by elemental analysis data, thermogravimetry, and IR spectroscopy. X-ray diffraction analysis for I was performed. The crystals are orthorhombic, a = 15.862(3) ?, b = 13.401(3) ?, c = 8.6800(17) ?, V = 1845.1(6) ?3, Z= 4, space group P21212, R1= 0.0520 for 5152 reflections with I > 2??(I). Compound I is composed of the dimeric complex anions [(H2O)2Ge(??-Tart)2Ge(OH)]?, dioxonium cations, and water molecules of crystallization. In the anion, the Ge(1) (CN = 6) and Ge(2) (CN = 5) atoms are linked by two chelating bridging fully deprotonated tartaric acid ligands through two carboxyl (average Ge-O, 1.883(4) and 1.893(4) ?, respectively) and two alcohol (average Ge-O, 1.859(4) and 1.779(4) ?, respectively) oxygen atoms. The coordination polyhedron of Ge (1) is completed to a distorted octahedron by the oxygen atoms of two water molecules (Ge(1)-O(H2O), 1.933(4) and 1.854(3) ?). The Ge(2) coordination polyhedron is trigonal bipyramid. Its base is formed by two alcohol oxygen atoms of two bridging Tart4? ligands and the oxygen atom of the terminal hydroxy group (Ge-O, 1.764(4) ?). The axial positions are occupied by the carboxyl oxygen atoms of the Tart4? ligands (the O(5)Ge(2)O(11), 176.84(16)°). In the crystal, the structural units are combined by hydrogen bonds to a three-dimensional framework.  相似文献   

13.
The reactions of H(2)COO with HO(2) and the HO(2)···H(2)O complex are studied by employing the high-level quantum chemical calculations with B3LYP and CCSD(T) theoretical methods, the conventional transition-state theory (CTST), and the Rice-Ramsperger-Kassel-Marcus (RRKM) with Eckart tunneling correction. The calculated results show that the proton transfer plus the addition reaction channel (TS1A) is preferable for the reaction of H(2)COO with HO(2) because the barriers are -10.8 and 1.6 kcal/mol relative to the free reactants and the prereactive complex, respectively, at the CCSD(T)/6-311++G(3df,2p)//B3LYP/6-311++G(d,p) level of theory. Furthermore, the rate constant via TS1A (2.23 × 10(-10) cm(3) molecule(-1) s(-1)) combined with the concentrations of the species in the atmosphere demonstrates that the HO(2) radical would be the dominant sink of H(2)COO in some areas, where the concentration of water is less than 10(17) molecules cm(-3). In addition, although the single water molecule would lower the activated barrier of TS1A from 1.0 to 0.1 kcal/mol with respect to the respective complexes, the rate constant is lower than that of the reaction of HO(2) with H(2)COO.  相似文献   

14.
A pure phase of monosodium aluminate hydrate Na2O · Al2O3 · 2.5H2O (MAH) is synthesized and characterized by means of XRD, IR, SEM, TGA, and DSC. The heat capacity of the compound is measured in the temperature range of ?100 to 100°C, and the thermal contributions to enthalpy and entropy are calculated. The standard entropy, enthalpy, and Gibbs energy of formation of MAH at 298 K are estimated.  相似文献   

15.
In this work, dehydration of sodium diphosphate decahydrate Na4P2O7⋅10H2O and phase transformations of Na4P2O7 in open air have been studied in detail by thermo-Raman spectroscopy. The spectra were measured continuously in a temperature range from room temperature up to 600°C for the bands of P2O7 4- and H2O. The spectral variation showed one step of dehydration and four-phase transformations. The thermo-Raman intensity(TRI) and differential thermo-Raman intensity (DTRI) curves calculated from the characteristic bands of H2O also showed one step of dehydration with the loss of all hydrated water in the temperature interval from 45 to 69°C. Thermogravimetric measurements supported this result. The thermo-Raman investigation indicated the transformation of Na4P2O7 from low temperature phase to high temperature phase proceed through pre-transitional region from 75 to 410°C before the major orientational disorder at 418°C and minor structural modifications at 511,540 and 560°C. The results from differential scanning calorimetry and differential thermal analysis on Na4P2O7 showed endotherms at 407,517, 523, 548, 557°C and 426, 528, 534, 555, 565°C, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The title complexes, K3[Cd(Dtpa)] (H5Dtpa = diethylenetriamine-N,N,N,N′,N′-pentaacetic acid, (I)), K2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid, (II)), and Na2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (III), were prepared, and their compositions and structures were determined by elemental analyses, IR spectra, and single-crystal X-ray diffraction techniques, respectively. In complex I, the Cd is seven-coordinated by one Dtpa ligand yielding a pseudo-monocapped trigonal prism conformation, and the complex crystallizes in the triclinic crystal system with the Pi space group. The crystal data are as follows: a = 8.7300(17), b = 9.1200(18), c = 15.110(3) Å, α = 95.52(3)°, β = 96.59(3)°, γ = 99.63(3)°, V = 1170.0(4) Å3, Z = 2, ρ = 1.754 g/cm3, μ = 1.519 mm?1, F(000) = 616, R = 0.0644 and wR = 0.1712 for 3842 observed reflections with I ≥ 2σ(I). For complex II, in the [Cd(Edta)(H2O)]2? complex anion the Cd2+ ion is seven-coordinated by one Edta ligand and one water molecule, yielding a pseudo-pentagonal bipyramid conformation. In the [Cd(H2O)4]2+ cation, the bridged Cd is six-coordinated, yielding an almost standard octahedral conformation. The complex crystallizes in the monoclinic system with P21/n space group. The crystal data are as follows: a = 9.098(3), b = 16.442(6), c = 12.023(4) Å, β = 91.053(6)°, V = 1798.3(12) Å3, Z = 2, ρ = 2.098 g/cm3, μ = 2.086 mm?1, F(000) =1124, R = 0.0406 and wR = 0.1152 for 3680 observed reflections with I ≥ 2σ(I). In complex III, the conformations of Cd2+ ions are similar to those of the potassium salt complex, and the complex also crystallizes in the monoclinic crystal system with the P21/n space group. The crystal data are as follows: a = 9.134(7), b = 16.500(13), c = 12.075(10) Å, β = 91.054(12)°, V = 1820(2) Å3, Z = 2, ρ = 2.015 g/cm3, μ = 1.856 mm?1, F(000) = 1092, R = 0.0363 and wR = 0.0879 for 3707 observed reflections with I ≥ 2σ(I).  相似文献   

17.
18.
《Solid State Sciences》2000,2(2):205-214
The synthesis and crystal structure of a novel hydrated magnesium diphosphate and its high temperature variant are described. Both structures were solved from powder X-ray diffraction data. The room temperature variant with composition Mg2P2O7·3.5H2O crystallises in the monoclinic space group P21/c (No. 14) with a=10.9317(1), b=8.05578(9), c=9.2774(1) Å, β=90.201(1)°, V=816.99(2) Å3 and Z=4. The structure consists of sheets stacked along [100] which are linked through MgO2(H2O)4 pillars into a three-dimensional framework with cavities containing water molecules. Within the sheets there are infinite edge-sharing chains of Mg octahedra along [010] which are cross linked by P2O74− groups. A high temperature variant exists around 200°C. The crystal structure of this compound with composition Mg2P2O7·H2O was solved and refined in the monoclinic space group C2/c (No. 15) with a=18.6596(4), b=7.9769(1), c=8.9757(2) Å, β=107.378(1)°, V=1275.01(4) Å3, Z=8. The transformation to Mg2P2O7·H2O involves removal of the water molecules in the cavities and the water molecules of the Mg octahedral pillars in Mg2P2O7·3.5H2O. The sheets in Mg2P2O7·3.5H2O however remain unchanged during the transformation as the water molecule coordinating Mg here is retained. These sheets are linked through tetrahedral MgO4 pillars into a three-dimensional structure containing infinite 10-membered ring channels along [001]. Both compounds have been further characterised by 31P MAS NMR spectroscopy, thermogravimetric analysis and high temperature powder X-ray diffraction.  相似文献   

19.
Na[YbIII(Cydta)(H2O)2] · 5H2O (1) (H4Cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and [YbIII(Hegta)] · 2H2O (2) (H4egta = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) were prepared and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex 1 crystallized in the triclinic crystal system with space group P 1; the YbIII is eight-coordinate by a hexadentate Cydta and two water molecules. Complex 2 is a protonated egta complex, crystallized in the monoclinic crystal system with space group P 2 1 /c; YbIII is coordinated only by the octadentate Hegta ligand. Both these complexes adopt a pseudo-square antiprismatic conformation.  相似文献   

20.
The MnV2O6·4H2O with rod-like morphologies was synthesized by solid-state reaction at low heat using MnSO4·H2O and NH4VO3 as raw materials. XRD analysis showed that MnV2O6·4H2O was a compound with monoclinic structure. Magnetic characterization indicated that MnV2O6·4H2O and its calcined products behaved weak magnetic properties. The thermal process of MnV2O6·4H2O experienced three steps, which involves the dehydration of the two waters of crystallization at first, and then dehydration of other two waters of crystallization, and at last melting of MnV2O6. In the DSC curve, the three endothermic peaks were corresponding to the two steps thermal decomposition of MnV2O6·4H2O and melting of MnV2O6, respectively. Based on the Kissinger equation, the average values of the activation energies associated with the thermal decomposition of MnV2O6·4H2O were determined to be 55.27 and 98.30?kJ?mol?1 for the first and second dehydration steps, respectively. Besides, the thermodynamic function of transition state complexes (??H ??, ??G ?? , and ??S ?? ) of the decomposition reaction of MnV2O6·4H2O were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号